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ABSTRACT

Deep neural networks (DNNs) have been successfully ap-
plied to automatic speech recognition (ASR). However, no
study has investigated the possibility of building a language-
independent sub-network DNN as the basis for further train-
ing of any new language using a simple plug-in of the
sub-network. In this paper, we propose a novel technique
to split a DNN into language-independent and -dependent
sub-networks using multi-lingual speech training data. Our
basic assumption is that, in a DNN for speech processing,
language-independent feature processing is done in stages
that are near to the input layer, while language-dependent
processing is performed in stages that are near to the out-
put layer. Based on this assumption, we propose a tech-
nique to simultaneously optimize multiple sub-networks in a
DNN trained with multi-lingual speech data. The language-
dependent and -independent processing boundaries in indi-
vidual sub-networks are segmented automatically. We test
our technique in phoneme classification experiments. The
results demonstrate that a language-independent sub-network
DNN extracted by our technique can be used as a universal
network for speech processing of additional new languages.

Index Terms— Speech Recognition, Deep Neural Net-
work, Restricted Boltzmann Machine

1. INTRODUCTION

Deep neural networks (DNNs) have been successfully applied
to many applications, such as image processing and speech
recognition [1, 2, 3]. The training of a DNN consists of two
steps: One is greedy-layer wised unsupervised pre-training,
while the other is supervised fine-tuning. In the pre-training,
each layer is regarded as a restricted Boltzmann machine
(RBM) and is trained based on a contrastive divergence (CD)
algorithm [4]. The input to each layer is the output of the
lower layer. After pre-training, all layers are stacked to make
a DNN, and they are fine-tuned by using the conventional
back propagation (BP) algorithm [5].

In recent years, DNN have been applied to automatic
speech recognition (ASR). Speech recognition systems us-

ing DNN to calculate state output probabilities in a Hidden
Markov Model (HMM) have achieved higher performances
than Gaussian mixture model HMMs (GMM-HMMs) trained
with discriminative training such as Boosted Maximum Mu-
tual Information (BMMI) [6]. Many state-of-the-art perfor-
mances in large vocabulary continuous speech recognition
(LVCSR) tasks based on DNNs have been reported [7]. The
basic advantage of using a DNN is that the state output proba-
bility distribution can be more accurately estimated than when
using traditional GMM. In addition, by adding many hidden
layers in training a DNN, a more robust generalization abil-
ity is achieved compared to using a shallow neural network,
which has only one or a few hidden layers, as traditionally
used for many years.

Although many successful applications of DNNs have
been reported in ASR, no study has investigated the possibil-
ity of building a language-independent sub-network DNN that
can be used as the basis for further training of any newly in-
troduced language using a simple plug-in of the sub-network.
This is a very important issue because if there were such a
universal DNN, we could quickly build a DNN ASR for any
additional language without training the DNN from the very
beginning using a huge amount of training data. In this study,
we investigate the possibility of finding such a language-
independent sub-network in a DNN by using multi-lingual
speech-training data.

Our assumption is based on the basic intuition that a low-
level neural network performs basic acoustic feature detec-
tion that is common to all kinds of acoustic events, such as
frequency and temporal transitions, while a high-level neu-
ral network detects specific features, such as vowels, stops,
fricatives, or possibly language-dependent features. Based on
this assumption, in a DNN for speech processing, language-
independent feature processing is done in stages that are near
to the input layer, while language-dependent processing is
performed in stages that are near to the output layer. Un-
der this assumption, we propose a novel technique to split a
DNN into language-independent and dependent sub-networks
using multi-lingual speech-training data. The proposed tech-
nique can simultaneously optimize multiple sub-networks in
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a DNN trained with multi-lingual speech data. The language-
dependent and -independent processing boundaries in indi-
vidual sub-networks are segmented automatically. We tested
our technique by phoneme-classification experiments to con-
firm its effectiveness.

In bottle-neck feature based multi-lingual ASR, some re-
searchers have proposed to adapt an MLP trained by multi-
lingual speech to new language[8, 9]. Our work is differ-
ent from their work since we try to expressly figure out a
language-independent sub-network from deep networks.

The rest of this paper is organized as follows. Section 2
describes a technique for optimizing multiple sub-networks
simultaneously and segmenting processing boundaries in in-
dividual sub-networks automatically. In Section 3, our pro-
posed technique is evaluated by phoneme-classification ex-
periments using Japanese, English, and Chinese speech data.
Section 4 gives our conclusions, and discuses the promise of
using a language-independent sub-network extracted by our
proposed technique for additional new languages.

2. SIMULTANEOUS OPTIMIZATION OF MULTIPLE
SUB-NETWORKS

In this section, we describe our proposed technique for op-
timizing DNNs consisting of multiple sub-networks. As de-
scribed in the introduction, language dependent sub-network
is located in upper layers to process language-specific infor-
mation, while language independent sub-network in lower
layers deals with basic acoustic feature detection which
is common to all acoustic events. This idea is illustrated
in Fig. 1 where a language-independent sub-network (LI)
is connected to language-dependent sub-networks (LDn).

LDLI

layer
Hidden
layer

Output Input
layer

Back propagation

Forward propagation

Fig. 2. Forward and back propagation between sub-networks

These connections between sub-networks represent multiple
DNNs such as LI→LD1 and LI→LD2 as shown in Fig. 1.

In pre-training, the LI sub-network is pre-trained using
multi-lingual speech data for initialization. The LDn sub-
networks can be pre-trained in two types of ways for initial-
ization. One way is to pre-train each LDn sub-network using
the output calculated from LI sub-network for speech data of
a language depending on the LDn sub-network. Another way
is to pre-train the LDn sub-network using the output calcu-
lated from LI for multi-lingual speech data [10]. In this study,
the later pre-training method is used for each of LI and LDn

sub-networks.
In fine-tuning, a DNN including the common LI sub-

network and one LDn sub-network is selected alternately.
The selected DNN is trained using mini-batches consisting
of several frames for parameter updating. All sub-networks
are optimized simultaneously by estimating multiple DNNs
(sharing the same LI sub-network) using a BP algorithm for
all training languages. This estimation approach is similar to
“embedded training” in conventional HMM parameter esti-
mation for acoustic model where multiple phone models are
updated simultaneously. In one DNN, how many layers are
related to LI sub-network (and the left layers are related to
LD sub-network) can be optimized in the training.

Neuron connections between sub-networks are shown in
Fig.2. In the forward propagation phase, the input yLD

i is set
as the output xLI

i .

xLI
i = yLD

i (1)

where i is a index of neuron. The number of output neurons in
LI sub-network should be the same as that in the input neurons
of LD sub-network. In the back propagation phase, the error
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Table 1. Phoneme classification rate of baseline system (%)
Lang.

# of layers Jp En Ch
2 71.69 51.09 60.37
4 73.28 51.51 61.58
6 75.13 54.50 62.58

signal eLI
i of neurons in the output layer of LI sub-network is

calculated from eLD
j of hidden neurons in the second layer of

LD sub-network as shown by the following equation.

eLI
i = xLI

i (1 − xLI
i )

∑
j

wije
LD
j (2)

This technique can be applied to multiple DNNs, depend-
ing on the relationships among them. Processing boundaries
between sub-networks are segmented in a relative way.

3. EXPERIMENTS

3.1. Experimental conditions

We tested our proposed technique on frame-level phoneme
classification experiments using Japanese, English and Chi-
nese speech data. Speech data collected from “VoiceTra”
[11] were used for this evaluation. Our institute (NICT) re-
leased a network-based multilingual speech-translation sys-
tem called “VoiceTra” as an application for smart phones at
the end of July 2010. It is intended to be used in commu-
nication with foreign visitors in Japan and in conversations
with local people on trips abroad. The acoustic parameters
consisted of 12 MFCCs, log pow, 12 ∆MFCCs, ∆ log pow,
12 ∆∆MFCCs, and ∆∆ log pow (a total of 39 dimensional
acoustic features), extracted from frames of 20-ms length
with 10-ms frame shifts. In all, 429 dimensional acoustic
features consisting of 11 frames (including 5 preceding and
succeeding frames) were used as input vectors of DNNs. The
number of Japanese, English, and Chinese phonemes were
26, 39, and 30 respectively. The number of output neurons in
DNNs is the same as the number of phonemes for each lan-
guage. The training data included 40,000 utterances (about
25 hours) for each language. The number of evaluation data
is 1,000. Each utterance has a terminal identification data
(terminal ID), and any terminal ID in the evaluation data is
not included in the training data. In pre-training, a fixed learn-
ing rate of 0.005 was used for estimating RBM parameters.
Number of epochs was 100. In fine-tuning, the learning rate
started at 0.001. If the error in development data increased,
the learning rate was halved. The number of development
data is 2,000. Any terminal ID in development data is not in-
cluded in the training and evaluation data. RBMs and DNNs
were trained with a mini-batch size of 128.

Table 2. Phoneme classification performance (%) of DNNs
(LIJp,En→LDEn and LIJp,En→LDJp)

# of layers Lang.
LI LD En Ja
1 5 54.37 74.73
2 4 54.61 74.86
3 3 54.63 74.90
4 2 54.59 74.82
5 1 52.50 73.38

Table 3. Phoneme classification performance (%) of DNNs
(LIJp,Ch→LDCh and LIJp,Ch→LDJp)

# of layers Lang.
LI LD Ch Ja
1 5 62.89 74.60
2 4 62.93 74.67
3 3 63.10 74.85
4 2 63.08 74.70
5 1 62.05 74.08

3.2. Baseline performance

We evaluated phoneme classification performances using
conventional DNNs for each of the three languages as base-
line systems. Total number of layers in DNNs were two, four,
and six, excluding input layer. The number of hidden neurons
was 512 in each layer. In pre-training, DNNs were initialized
using Japanese, English and Chinese speech data. Table 3
shows the experimental results. In the table, “Jp”, “En”, “Ch”
are Japanese, English and Chinese respectively. Experimental
results show that phoneme classification performances were
consistently improved by increasing the number of hidden
layers.

3.3. Estimation of a language-independent sub-network

To estimate a language-independent sub-network that can be
used for additional languages, two DNNs (LIJp,En→LDJp

and LIJp,En→LDEn) consisting of three sub-networks (LIJp,En,
LDJp, and LDEn) were pre-trained and fine-tuned using
Japanese and English speech data. We also performed same
experiments on different language pairs of Japanese and Chi-
nese. Sigmoid function was used as the output function of
hidden and output neurons in the LI and hidden neurons in
the LD. Softmax function was used for output neurons in the
LD. The number of hidden neurons was 512 for each layer,
the same as that in the baseline system. The number of layers
in these DNNs was six.

Table 2 shows phoneme classification performance ob-
tained using two DNNs (LIJp,En→LDJp and LIJp,En→LDEn),
and Table 3 shows this phoneme classification performance
using other DNNs (LIJp,Ch→LDJp and LIJp,Ch→LDCh).
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Table 4. Phoneme classification performance (%) of DNNs
(LIJp,En→LDCh and LIJp,Ch→LDEn)

# of layers Lang.
LI LD Ch En
1 5 62.44 53.00
2 4 63.50 54.74
3 3 63.57 55.66
4 2 62.63 55.34
5 1 59.29 51.18

As shown in Tables 2 and 3, the phoneme classification
performance when using LD with more than two layers (using
LI with less than four layers) was almost the same as the base-
line performance. On the other hand, the phoneme classifica-
tion performance of DNNs with only one-layer LD was de-
graded. This may be due to an insufficient number of param-
eters used for language-dependent processing in the LD. A
combination of three-layers LI and three-layers LD archived
slightly better performance compared with other combina-
tions. We can deduce that the estimation accuracy of LI was
improved by sharing parameters among multiple languages.

3.4. Evaluation for additional new language

We evaluated the phoneme classification performance of two
DNNs (LIJp,En→LDCh and LIJp,Ch→LDEn). In the pre-
training phase, the LDCh and LDEn were initialized using the
output of LIJp,En and LIJp,Ch using Japanese, English and
Chinese speech data respectively. In the fine-tuning phase,
only the parameters of the LDCh and LDEn were updated,
while the parameters of LIJp,En and LIJp,Ch were fixed.

As shown in Table 4, even though only the parameters of
language-dependent sub-networks (LDCh and LDEn) were
updated, the phoneme classification performances of these
DNNs were similar to those of the baseline systems except
for one-layer LD. From these experiments, we can confirm
that a language-independent sub-network DNN estimated by
our proposed technique can be used as a universal network for
speech processing of additional new languages.

4. CONCLUSION

In this paper, we proposed a novel technique to split a DNN
into language-independent and -dependent sub-networks us-
ing multi-lingual speech training data. Our technique op-
timizes simultaneously multiple sub-networks in a DNN
trained with multi-lingual speech data. Experimental results
demonstrate that a language-independent sub-network DNN
extracted by our proposed technique can be used as a univer-
sal network for speech processing of other newly introduced
languages.

In future work, we will evaluate our technique on LVCSR

tasks and applying this technique for building multi-lingual
ASR based on DNN. Moreover, it is difficult to train synapse
weights that are near to the input layer when estimating an
MLP with many hidden layers by the conventional BP algo-
rithm. We will try to use more efficient training algorithm
such as Hessian free estimation [12] to train LI sub-network
precisely.
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