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ABSTRACT

In this paper, Multi Layer Perceptron (MLP) based multilingual bot-
tleneck features are investigated for acoustic modeling in three lan-
guages — German, French, and US English. We use a modified
training algorithm to handle the multilingual training scenario with-
out having to explicitly map the phonemes to a common phoneme
set. Furthermore, the cross-lingual portability of bottleneck fea-
tures between the three languages are also investigated. Single pass
recognition experiments on large vocabulary SMS dictation task in-
dicate that (1) multilingual bottleneck features yield significantly
lower word error rates compared to standard MFCC features (2) mul-
tilingual bottleneck features are superior to monolingual bottleneck
features trained for the target language with limited training data,
and (3) multilingual bottleneck features are beneficial in training
acoustic models in a low resource language where only mismatched
training data is available — by exploiting the more matched training
data from other languages.

Index Terms— MLP, bottleneck, multilingual, mismatched
acoustical condition

1. INTRODUCTION

As manually transcribed speech data is one of the substantial cost
factors to develop an automatic speech recognition (ASR) system
for a new language, there is an increasing interest in reusing multi-
lingual resources to ease the model training. Neural networks have
become a major component of the frontend techniques of recent
ASR systems [1]. Beside the hybrid acoustic modeling [2], the
MLP based posterior estimations can be integrated into the Gaus-
sian Mixture based Hidden Markov Model (GMM-HMM) frame-
work through either probabilistic or bottleneck TANDEM approach
[3, 4]. Since it was first observed in [5] that the concatenated cep-
stral and MLP based posterior features trained on English data sig-
nificantly improved the MFCC based systems in entirely different
languages, Arabic or Mandarin, many studies investigated the cross-
lingual portability of NNs.

In [6], cross-lingual portability of long-term bottleneck features
having complex hierarchical structure was investigated in concate-
nation with MFCC, and it was shown that the topology of the NN
is more important than the language on which the MLP is trained
on. The results indicate the universal, language independent feature
extraction properties of MLP. It also demonstrated the possibility
of fast development of TANDEM GMM-HMM systems without the
time consuming training of MLPs. However, with modern GPUs the
constraint of training complex MLPs on hundreds of hours of speech
has become a less limiting factor.

To mitigate the requirement of a significant amount of data to
train large MLPs from scratch e.g. for languages with low resources,
NNs of other languages can be used for initialization. In the case of
MLPs, only the weights before the language specific output layer are
randomly initialized, and then adapted with limited target data [7].
Before adapting the net, the mapping of the target phoneme set to
the ”borrowed” language is another possible approach [8]. In order
to train a NN on multiple languages, similar sounds across different
languages can be unified knowledge based, such as IPA [9, 10], or
by data driven approaches [11]. To avoid the mapping to a common
phone set, more fundamental units such as articulatory features can
be used [12].

Without limiting our investigation to low resource languages,
this study focuses on multilingual training of MLPs, especially on
BN features. Since in real-time applications the long term features
having about 500ms delay is not acceptable, our investigation is lim-
ited to short-term MLP features only. Due to the fact that the avail-
able lexicons for ASR are usually simplified (e.g. by phone folding),
mapping phones of multiple languages on a common set is often am-
biguous or inaccurate. Following a similar approach as in [13], we
investigate novel multilingual bottleneck MLP features, which force
the BN layer to learn a low dimensional language independent rep-
resentation of the speech.

Besides mutually testing the cross-lingual portability of short-
time MLP features between three different languages, the multilin-
gual BN features are also extensively evaluated in single pass recog-
nition experiments, for the most part, using GMM-HMMs trained
with maximum likelihood criteria. Furthermore, in a constrained
scenario where we assume that only acoustically unmatched record-
ings are available on the target language, the multilingual bottleneck
features are tested whether they are able to benefit from matched
data at hand from other languages.

The paper is organized as follows. After the overview of the re-
lated work in Section 2, the Section 3 introduces the proposed mul-
tilingual bottleneck MLP to extract more language-independent BN
features. The details of our experimental setups are given in Sec-
tion 4. Section 5 reports the results. The study finishes with conclu-
sions in Section 6.

2. RELATION TO PRIOR WORK

The incorporation of MLP based posterior estimation as additional
features for GMM-HMM was introduced in [3]. This TANDEM ap-
proach was further improved by the bottleneck concept of [4]. To
initialize the bottleneck MLP for low resource languages, [14] ap-
plied data from multiple languages after each other. In order to avoid
the mapping onto a common phone set, the last layer was changed
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and randomly initialized after training on each language. The mul-
tilingual MLP training applied in this paper was first proposed in
[13] for hybrid acoustic modeling, and this work generalizes this
idea for BN features with TANDEM approach. Compared to [14],
instead of using the data of different languages sequentially, our BN
are trained on the merged multilingual resources jointly. Similarly,
unifying similar sounds of different languages is still not necessary.
In contrast to [13], the language dependent class posteriors are gen-
erated by non-linear transformation from a low-dimensional feature
space using a much wider hidden layer before the output layer.

3. MULTILINGUAL TRAINING OF BOTTLENECK MLP

In order to extract roboust MLP features from multilingual re-
sources, we apply a recently proposed training method [13]. The
three languages are denoted as GER, FRA, ENU, and they do have
different numbers of phonemes. The output layer of the MLP is the
joint phoneme set, where each phoneme is appended with language
identity, similar as in [11]. The raw feature vectors from the three
languages are merged, randomized and presented to the MLP for
training along with the phonetic and language labels. In contrast
to standard MLPs, the network applies language specific softmax
function as output non-linearity, thus the output sums up to three in
case of three languages. Exploiting the language-ID of the feature
vector, back propagation is initiated only from the language specific
subset of the output. In this way the often inaccurate mapping of
all the phonemes of different languages to a common set is avoided.
The subsets of the output still can be considered as phoneme poste-
rior estimation of the given languages. Except the output layer, the
network is shared between the languages.

In Fig. 1 the multilingual training of NNs is summarized using
a special 5-layer bottleneck MLP structure. The key idea is that the
bottleneck layer is shared between the languages, and the multilin-
gual training forces the net to extract a more language-independent
representation from the input. The posteriors of the different lan-
guages are generated by a non-linear transformation from a com-
mon, low dimensional feature space (bottleneck). Although in this
study only the last layer is considered language dependent, the last
hidden-layer can also be split up to language specific parts. However,
for the proof of this type of multilingual BN concept we restrict the
language dependent part of the MLP to the last layer only.

4. EXPERIMENTAL SETUP

4.1. Corpus description

Our investigation of how acoustic data from other languages can be
reused for MLP based feature extraction is limited on short mes-
sage dictation recognition task of three languages: German (GER),
American English (ENU), and French (FRA). As we focus our study
on multilingual aspects, we choose data sets with comparable acous-
tic conditions in each language. Thus, for testing automotive data
collected in driving cars was used. Although the recording envi-
ronments are similar, there are slight differences regarding the type
of cars and driving noise conditions related to the specific country.
In order to mitigate the potential effect of different amounts of lan-
guage specific data on the cross- and multilingual investigation, cor-
pora with similar size are selected for all the three languages to train
acoustic models and MLPs. Therefore, for our research the corpus
size per language is chosen as approximately 150 hours, resulting

in a total of about 450 hours of speech. Every training corpus con-
sists of two types of recording. The first part is acoustically matched
with the test data, whereas recordings in the second group are un-
matched. Table 1 summarizes the distribution of speech data be-
tween languages and types of recordings selected for this study.

Table 1. Amount of training and testing data for different languages

Corpus Type
Language

GER ENU FRA

A
m

ou
nt

of
sp

ee
ch

[h
]

Training
matched 93 96 86

unmatched 77 61 66
Test 9.3 11 26

#phonemes 49 51 39

4.2. Acoustic modeling

In order to evaluate the cross- and multilingual BN features, we set
up a contemporary single pass ASR system with online adaptation
for our research purpose. The acoustic models are trained on cep-
stral features (MFCC). The pre-emphasized power spectrum is com-
puted every 10ms. With the derivatives augmented mean normalized
MFCCs are projected by LDA to a lower dimensional subspace. The
acoustic models for all systems are based on cross-word triphone
HMM, and the emission probabilities are estimated by Gaussian
mixture distributions using maximum likelihood criteria. Discrim-
inatively trained acoustic models whenever used are trained using
minimum classification error (MCE) criterion.

For training the 5-layer bottleneck MLPs, the number of nodes
in the first and last hidden layer is always fixed to 5000, whereas
the bottleneck layer consists of 50 nodes. As input, 9 consecutive
MFCC frames and their derivatives are fed to the MLP. The ran-
domly initialized, fully connected MLPs are trained using the cross-
entropy criterion to approximate phoneme posterior probabilities. In
order to prevent overfitting and adjust the learning rate, ten percent
of the training set is used for cross validation. All activations of the
nodes within the output layer are transformed by the softmax func-
tion, whereas the sigmoid transfer function is applied in all other
layers. For multilingual training we refer to Section 3. To extract
the BN features, the linear output of the bottleneck layer is taken.
Moreover, the BN features are further transformed by PCA and con-
catenated to the MFCC.

5. EXPERIMENTAL RESULTS

5.1. Baseline

In the first experiment, only MFCC based acoustic models were
trained. The recognition results in Word Error Rate (WER) can be
seen in the first column of Table 2. Moreover, we also trained the
BN features using only target language data. The recognition per-
formance on the given language is shown in the diagonal of the next
three columns of the table. It can be seen, the short-time BN features
improved the MFCC baseline by about 10% relative, and it is con-
sistent with the results reported in the literature [15]. Besides that a
significant real-time factor improvement was also observed.
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Fig. 1. The joint training of bottleneck MLP on multiple languages (GER, ENU, FRA). The different colors indicate different languages, and
language dependent back-propagation from the output layer. The other parts of the network including the bottleneck layer are shared between
the languages.

Table 2. Baseline MFCC results in Word Error Rate (WER) are
compared with the performance of the target and cross-lingual bot-
tleneck (MFCC+BN) features. The relative improvements over the
MFCC system of the target language are indicated in round brackets.

WER [%] MFCC
MFCC+BN

Bottleneck trained on
GER ENU FRA

Te
st

la
ng

ua
ge GER 29.97

27.50 29.63 30.38
(8.2) (1.1) (-1.4)

ENU 21.69
21.31 18.85 22.63
(1.8) (13.1) (-4.3)

FRA 37.78
37.76 38.72 33.95
(0.1) (-2.5) (10.1)

5.2. Cross-lingual portability of mono-lingual BN features

In the second experiment, the cross lingual portability of the MLPs
trained in the previous experiment was investigated. Comparing
the off-diagonal entries of Table 2 to the first column, we observed
only a slight maximal 2% relative improvements compared to MFCC
alone. There exists cross-lingual portability between German and
English to a certain extent (1-2% relative), but using French BN fea-
tures for the remaining two languages or BN features from other
languages on the French task shows WER increase. As a summary,
the cross-lingual portability of BN could help, but the performance
remained far behind that was achieved by using target language data
to train the BN. Our short-time BN features are much simpler as
the long-term features applied in [6], thus our observation is similar
to [7], where short-time MLP features did not lead to performance
improvement without additional weight adaptation.

5.3. Results with multilingual BN features

In the third experiment, we investigated the multilingual BN features
trained according to Section 3. In the first tests the multilingual BNs
were trained on two languages other than the target one. E.g. BN
features trained on US English and French were tested in German
ASR experiments. The results are presented in the first column of Ta-
ble 3. Although the cross-lingual French BN deteriorated the recog-
nition performance, the multilingual training on the merged French
and English data improved the German system more than 5% rela-

tive. The improvement does not reach the target language BN perfor-
mance, but clearly – 4% relative – outperformed the best results of
cross-lingual BN. Similar observations can be made on English and
on French using German+French or German+English multilingual
BN features respectively. The results indicate that through the multi-
lingual training the BN features capture more language-independent
representation of the speech, and are better suited for cross-lingual
porting to new languages.

In the next experiment, multilingual bottleneck features were
trained using target language data with other languages. The results
can be seen in the 2nd-4th columns of Table 3. It is encouraging to
see that adding additional data from a non-target language further
improved the performance. To obtain common BN features for the
three languages, we also trained a network on all the 450 hours of
data. Remarkably, this single net outperformed all the above results
in Table 2.

Experimental results indicate that multilingual BN feature esti-
mation is superior compared to the monolingual case despite possi-
ble differences in the type of cars and noise conditions specific to the
country (and therefore language). Since in our experiments, we used
only about 150 hours of data per language, we attribute this to avail-
ability of larger training data. Therefore, if more data were available
in individual languages, the trend could be different.

To investigate the effect of language dependent softmax and
back-propagation, BN features using a unified phoneme set as in
[11] were also tested. On German task this BN showed 27.57%
WER which is 2.5% relative worse than the proposed multilingual
training. In order to have a better understanding of the multilingual
BN features and the effect of the amount of data, the previous ex-
periment was repeated with a multilingual BN trained on one third
(chosen randomly) of the merged corpora resulting in about the same
amount of speech data from each language. This multilingual BN
achieved 27.90% on the German task, which is slightly worse than
using same amount of source language speech. The previous results
prove the effectiveness of the multilingual training, and underline
the importance of target language data.

The results so far are obtained using an GMM-HMM system
trained using the ML criterion. Table 4 shows WERs of the dis-
criminatively trained German GMM-HMM systems. It can be seen
that the gain we observed previously with ML models are not dimin-
ished by MCE. Again, the multilingual BN achieved the best perfor-
mance outperforming the BN trained on target language data only.
The BN trained on French and English (without seeing any German
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Table 3. Recognition results achieved with multilingual BN features.
The relative improvements over the MFCC (in Table 2) are indicated
in round brackets.

WER MFCC+BN
[%] BN trained on

Te
st

la
ng

ua
ge

GER
ENU+FRA GER+FRA GER+ENU GER+ENU+FRA

28.37 27.06 26.89 26.90
(5.3) (9.7) (10.3) (10.2)

ENU
GER+FRA ENU+FRA ENU+GER GER+ENU+FRA

20.29 18.21 17.99 17.89
(6.5) (16.0) (17.1) (17.5)

FRA
GER+ENU FRA+GER FRA+ENU GER+ENU+FRA

35.88 33.52 33.45 33.61
(5.0) (11.3) (11.5) (11.0)

data) improved the MFCC system more than 7% relative, whereas
the monolingual English BN hardly resulted in better performance
than baseline MFCC.

Table 4. Recognition results after discriminative training of GMM-
HMM on the German task

Features WER [%] rel.imp [%]

MFCC 29.10 -

M
FC

C
+B

N

B
N

tr
ai

ne
d

on GER 26.40 9.3
ENU 28.78 1.1

ENU+FRA 27.06 7.0
GER+ENU 25.68 11.8

GER+ENU+FRA 25.61 12.0

5.4. Multilingual BN in mismatched acoustical conditions

The BN features were also investigated in an experiment where it is
assumed that only acoustically mismatched training data is available
on the target language. However, matched data from other languages
is available, and the multilingual MLP is applied to take advantage
of them. Column 1 in Table 5 shows the WERs obtained by train-
ing GMM-HMM acoustic models using baseline MFCC features on
mismatched data. Comparing to the results in Table 2, the base-
lines become 15% worse because of the acoustical difference be-
tween training and test recordings. Concatenating MFCC with BN
trained on the target language showed less improvement than in the
matched case (2nd column). In this special ASR experiment, using
non-target monolingual BN (3rd column) led to more improvement
than previously, since it had seen matched data, but in another lan-
guage. Moreover, porting acoustically matched knowledge from two
other languages through multilingual BN improved the results fur-
ther. However, as the last column of Table 5 shows, the best results
were achieved when the mismatched data available in the target lan-
guage and all matched data from other languages was used to train
the BN. In this case, the amount of target language data is less than
1/5 during BN training. The final systems achieved comparable re-
sults as the MFCC system trained on matched data (Table 2).

Table 5. Baseline (MFCC), cross-, and multilingual results using
only mismatched data in the test language. Bold font indicates the
availability of both matched and mismatched data in the language

WER
MFCC

MFCC+BN
[%] BN trained on

Te
st

la
ng

ua
ge

GER ENU +
ENU
FRA +

GER
ENU+FRA

GER 34.58 33.39 34.07 32.74 31.72
(3.4) (1.5) (5.3) (8.3)

ENU GER +
GER
FRA +

GER
ENU+FRA

ENU 26.14 23.54 24.81 23.68 21.79
(9.9) (5.1) (9.4) (16.6)

FRA GER +
GER
ENU +

GER
ENU+FRA

FRA 43.52 40.51 43.65 41.96 39.98
(6.9) (-0.3) (3.6) (8.1)

5.5. Discussion

Although the experiments were designed to have similar acoustic
conditions for all languages, there is a slight driving condition and
car noise characteristic mismatch between them. Consequently, the
neural networks in the multilingual experiments were trained not
only on more languages but also on more types of noises, which con-
tribute to better generalization. However, as the results on cross- and
multilingual porting of BN for another languages showed, the im-
provements increased only slightly even in completely mismatched
training and testing conditions. This could also indicate that the im-
provement is mainly related to the better cross-language generaliza-
tion property of multilingual MLP.

Since our research was limited to three languages and phoneme
sets, as a future direction, we intend to carry out experiments with
more languages and corresponding MLP output targets.

6. CONCLUSIONS

A recently introduced multilingual MLP training was extensively
evaluated within the bottleneck TANDEM framework. Applying the
multilingual technique for bottleneck MLP to extract more language
independent features, it was experimentally shown that the multilin-
gual BN features offered better cross-lingual portability. Moreover,
we also showed, that through the multilingual approach a single BN
net can be trained for three languages, and in all cases it outper-
formed the BN features trained only on target language data. Finally,
the multilingual BN was successfully applied to reduce the mismatch
between training and testing acoustical conditions reusing matched
data from other languages.
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