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ABSTRACT
In this paper, three utterance modelling approaches, namely Gaus-
sian Mean Supervector (GMS), i-vector and Gaussian Posterior
Probability Supervector (GPPS), are applied to the accent recogni-
tion problem. For each utterance modeling method, three different
classifiers, namely the Support Vector Machine (SVM), the Naive
Bayesian Classifier (NBC) and the Sparse Representation Classifier
(SRC), are employed to find out suitable matches between the utter-
ance modelling schemes and the classifiers. The evaluation database
is formed by using English utterances of speakers whose native lan-
guages are Russian, Hindi, American English, Thai, Vietnamese and
Cantonese. These utterances are drawn from the National Institute
of Standards and Technology (NIST) 2008 Speaker Recognition
Evaluation (SRE) database. The study results show that GPPS and
i-vector are more effective than GMS in this accent recognition task.
It is also concluded that among the employed classifiers, the best
matches for i-vector and GPPS are SVM and SRC, respectively.

Index Terms— Accent Recognition, i-vector, Gaussian Poste-
rior Probability Supervector, Gaussian Mean Supervector

1. INTRODUCTION

A fundamental challenge of using Automatic Speech Recognition
(ASR) systems in real world markets such as telephone networks and
personal computers is their significant performance drop for non-
native speakers [1, 2]. Consequently, accent/dialect recognition, has
received an increased attention during the last years due to its im-
portance for the enhancement of ASR performance [2]. It has also
a wide range of commercial applications such as targeted advertis-
ing, service customization and forensics software. Although differ-
ent methods have been suggested to solve this problem during the
last decade, it still remains a challenging task.

Accent/dialect recognition techniques can be divided into
phonotactic and acoustic approaches [3]. Since phonotactic features
and acoustic (spectral and/or prosodic) features provide complemen-
tary cues, state-of-the-art methods usually apply a combination of
both through a fusion of their output scores [3]. A phone recognizer
followed by language models (PRLM) and parallel PRLM (PPRLM)
techniques developed within the language recognition area, are suc-
cessful phonotactic methods focusing on phone sequences as an
important characteristic of different accents [4].
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The acoustic approaches, which are the main focus of this pa-
per, enjoy the advantage of requiring no specialized language knowl-
edge [3]. One effective acoustic method for accent recognition in-
volves modeling speech recordings with Gaussian mixture model
(GMM) mean supervectors before using them as features in a sup-
port vector machine (SVM) [3]. Similar Gaussian mean supervec-
tor (GMS) techniques have been successfully applied to different
speech analysis problems such as speaker recognition [5]. While ef-
fective, these features are of a high dimensionality resulting in high
computational cost and difficulty in obtaining a robust model in the
context of limited data. Another effective approach for modeling
the utterances is Gaussian posterior probability supervector (GPPS),
which entails a lower dimension compared to GMSs [6, 7]. Recent
studies show that the GPPSs carry complimentary information to
GMSs [6, 8]. Consequently, incorporating them in the recognition
system might increase the overall accuracy. A similar GPPS frame-
work was effectively applied to the problem of age and gender recog-
nition [6, 9, 10]. In the field of speaker recognition, recent advances
using i-vectors have increased the recognition accuracy considerably
[11]. An i-vector is a compact representation of an utterance in the
form of a low-dimensional feature vector. The same idea was also
effectively applied to spoken language recognition and speaker age
estimation [12, 13].

In this paper, we apply GMSs, GPPSs and i-vectors to recognize
the native language of speakers from English spontaneous telephone
speech recordings (L1 recognition problem). To find out a suitable
classifier for each modeling method, three different pattern recogni-
tion approaches, namely the Support Vector Machine (SVM), Naive
Bayesian Classifier (NBC) and the Sparse Representation Classi-
fier (SRC), are tested. The evaluation database is formed by us-
ing English utterances of speakers whose native languages are Rus-
sian, Hindi, American English, Thai, Vietnamese and Cantonese.
These speech signals are extracted from the National Institute of
Standards and Technology (NIST) 2008 Speaker Recognition Eval-
uation (SRE) corpus.

The rest of this paper is organized as follows. Section 2 presents
the related work and contributions of this paper. In Section 3, the
developed accent recognition systems are elaborated in detail. Sec-
tion 4 explains our experimental setup. The evaluation results are
presented and discussed in section 5. The paper ends with conclu-
sions in section 6.

2. RELATED WORK AND CONTRIBUTIONS
Different acoustic approaches developed in the area of language
recognition have been suggested to reach a desirable accent recog-
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nition accuracy [3, 14, 15, 16]. Recently, Hanani et al. reported
results of applying GMM-UBM, GMM-SVM (which is labeled as
GMS-SVM in the rest of this paper) and GMM tokenization fol-
lowed by n-gram language model methods to recognize 14 accents
in the British Isles [3]. They used the Accents of the British Isles
(ABI-1) corpus in their research. Their evaluation results show that
GMS-SVM is more accurate compared to their other acoustic-based
accent recognition systems.

DeMarco and Cox take this a step further by applying i-vectors
to the same task [15]. They tested six different classification algo-
rithms such as SVM and Linear Discriminant Analysis (LDA) and
concluded that similar results as those of GMS-SVM can be obtained
in the i-vector framework. Their results show no advantage for using
i-vectors instead of GMSs.

In this paper, we investigate the effectiveness of GMS and i-
vector for native language recognition on a spontaneous and real
speech database instead of the ABI-1 corpus, which consists of clean
and read speech signals. Consequently, we formed a database of
non-native accents of English by extracting English utterances with
Russian, Hindi, American English, Thai, Vietnamese and Cantonese
accents from the NIST 2008 SRE database. For each utterance mod-
eling method, three different classifiers, namely SVM, NBC and
SRC are employed to further investigate the role of classifiers in
this task. Unlike SVM and NBC, sparse representation classification
techniques have never been tested on accent recognition problems.
On the other hand, recent studies show the effectiveness of GPPS
in other speech technology problems such as speaker adaptation and
speaker age group recognition [6, 8]. Consequently, we test GPPS
along with i-vectors and GMS in our investigations on accent recog-
nition too.

3. SYSTEM DESCRIPTION

3.1. Problem Formulation

In the accent or dialect recognition problem, we are given a training
data set Str = {(x1, y1), · · · , (xn, yn), · · · , (xN , yN )}, where xn
denotes the nth utterance of the training data set and yn denotes a
label vector which shows the correct accent of the utterance. Each
label vector contains a one in the ith row if xn belongs to the ith

class and zeros elsewhere. The goal is to approximate a classifier
function (g), such that for an unseen observation xtst, ŷ = g(xtst)
is as close as possible to the true label.

The first step for approximating function g is converting
variable-duration speech signals into fixed-dimensional vectors
suitable for the classification algorithms. Three approaches, namely
GPPS, GMS and i-vectors are widely used for this purpose. These
methods are described in section 3.2.

3.2. Utterance Modelling Approaches

In this section, the underlying idea of GMS, GPPS and i-vector is
explained in more details.

3.2.1. Gaussian Posterior Probability Supervector

Consider a Universal Background Model (UBM) with the following
likelihood function.

p(ot|λ) =
J∑

j=1

ωjp(ot|µj ,Σj)

λ = {ωj , µj ,Σj}, j = 1, · · · J (1)

where ot is the acoustic vector at time t, ωj is the mixture weight for
the jth mixture component, p(ot|µj ,Σj) is a Gaussian probability

density function with mean µj and covariance matrix Σj and J is
the total number of Gaussians in the mixture (2048 in this work).
Given an utterance, the occupancy posterior probability for the jth

mixture component is calculated as follows:

κj =
1

T

T∑
t=1

ωjp(ot|µj ,Σj)∑J
j=1 ωjp(ot|µj ,Σj)

(2)

where T is the total number of frames in the utterance. Finally, the
GPPS of the given utterance is formed as follows.

k = [κ1, · · · , κj , · · · , κJ ] (3)

Assuming the UBM components represent the acoustic space of all
accents in the training dataset, each element in the GPPS supervec-
tor of a sufficiently long utterance shows the existence level of the
corresponding component in the utterance accent. This information
facilitate in the identification of accents.
3.2.2. Gaussian Mean Supervector

Given an utterance, different approaches can be applied to adapt a
Universal Background Model (UBM) to the speech characteristics
of the new speaker [17, 5]. Then, the Gaussian means of the adapted
GMM are extracted and concatenated to form a GMS for the given
utterance. In this research, we apply Maximum-A-Posteriori method
to adapt the Gaussian means of the UBM [5].

3.2.3. i-vector

GMSs described in section 3.2.2 have been shown to provide a good
level of performance. In the related field of speaker recognition,
GMSs are commonplace. Recent progress in this field, however, has
found an alternate method of modeling GMM supervectors that pro-
vides far superior speaker recognition performance [11]. This tech-
nique is referred to as total variability modeling. Total variability
modeling assumes the GMM mean supervector, M, that best repre-
sents a set of feature vectors can be decomposed as

M = u + Tv (4)

where u is the mean supervector of the UBM, T spans a low-
dimensional subspace (400 dimensions in this work) and v are the
factors that best describe the utterance-dependent mean offset Tv.
The vector v is commonly referred to as the i-vector and has a
standard normal distribution N(0, I). Subspace T is estimated via
factor analysis to represent the directions that best separate different
speech recordings in a large development data set. An efficient
procedure for training T and MAP adaptation of i-vectors v can be
found in [18]. In the total variability modeling approach, i-vectors
are the low-dimensional representation of an audio recording that
can be used for classification and estimation purposes.

3.3. Classifiers

In this section, the applied classifiers are briefly described.

3.3.1. Naive Bayesian Classifier

Bayesian classifiers are probabilistic classifiers working based on
Bayes’ theorem and the maximum posteriori hypothesis. They pre-
dict class membership probabilities, i.e., the probability that a given
test sample belongs to a particular class. The Naive Bayesian clas-
sifier (NBC) is a special case of Bayesian classifiers, which assumes
class conditional independence to decrease the computational cost
and training data requirement [19]. In this paper, class distributions
are assumed to be Gaussian.
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3.3.2. Support Vector Machine

Support Vector Machines (SVM) is a supervised, binary and dis-
criminative classifier initially introduced by Cortes and Vapnik [20].
Given a set of training examples, an SVM attempts to find the maxi-
mum margin separation hyperplane between two classes of data such
that it generalizes well to the test data points. The basic SVMs are bi-
nary and discriminative classifiers, however, an effective multi-class
and probabilistic extension have also been developed by Wu et al.
based on pairwise coupling strategy [21].

3.3.3. Sparse Representation Classifier

Sparse representation classification techniques have received a great
deal of attentions in recent years. In sparse representation classifi-
cation, first we search for a sparse representation of a test sample in
terms of a linear combination of training samples. Then, the resid-
uals for each class are calculated. These residuals show the level of
similarity of the test sample with each category [22].

In our experiments, the dimension of feature vectors, i.e., the di-
mension of the GPPS, GMS or i-vector, is greater than the number
of training samples which leads to an over-determined sparse repre-
sentation problem. Therefore, to achieve the sparse representations
of the test samples, we applied an l1-minimization approach [22].

3.4. Training and Testing

The principle of the proposed accent recognition approach is illus-
trated in Figure 1. As it can be interpreted from this figure, in the
training phase, each utterance in the train data set is converted to
a high dimensional vector using one of the three utterance modeling
approaches (GPPS, GMS or i-vector) described in Section 3.2. Then,
the obtained high dimensional vector along with their corresponding
accent label are used to train one of the three classifiers described in
Section 3.3.

In the testing phase, the utterance modeling approach applied in
the training phase is used to extract a high dimensional vector from
the utterance of an unseen speaker. Then the trained classifier uses
the extracted vector to recognize the accent of the test speaker.

4. EXPERIMENTAL SETUP

4.1. Database

The National Institute for Standard in Technology (NIST) have held
annual or biannual speaker recognition evaluations (SRE) for the
past two decades. With each SRE, a large corpus of telephone (and
more recently microphone) conversations are released along with an
evaluation protocol. These conversations typically last 5 minutes
and originate from a large number of participants for whom addi-
tional meta data is recorded—including participant age, language
and smoking habits. The NIST databases where chosen for this work
due to the large number of speakers and because the total variabil-
ity subspace requires a considerable amount of development data for
training. The development data set used to train the total variabil-
ity subspace and UBM includes over 30,000 speech recordings and
was sourced from NIST 2004–2006 SRE databases, LDC releases of
Switchboard 2 phase III and Switchboard Cellular (parts 1 and 2).

The NIST 2008 SRE database includes, many English utter-
ances from speakers whose native languages are Spanish, Russian,
Hindi, etc. The native language of speakers usually affects their
English pronunciation, i.e., accented speech, due to transferring
the phonological rules from their native language into their English
speech and creating innovative pronunciations for English sounds

Fig. 1. The block diagram of the accent recognition systems in train-
ing and testing phases.

which do not exist in their mother tongue [23]. Unfortunately, the
number of utterances in some accents is not high enough to perform
our recognition experiments. Consequently, only five accents —
Russian (RUS), Hindi (HIN), American English (USE), Thai (THA)
and Vietnamese-Cantonese (VIE-YUH)— with enough available
recordings are chosen for our experiments. These utterances are
extracted from telephone recordings of the core protocol, short2-
short3, of the NIST 2008 SRE database. Note that since a fraction
of Vietnamese Americans consists of Hoa people whose native
language is Cantonese, Vietnamese and Cantonese are considered
as one category in our experiments. Table 1 lists the number of
utterances and speakers for each accent.

4.2. Performance Measure

The effectiveness of the proposed method is evaluated using the per-
centage of correctly classified utterances (Pcc) and minimum log-
likelihood-ratio cost (Cmin

llr ) [24, 25]. This section briefly describes
the applied performance measure methods.

4.2.1. Percentage of Correctly Classified Utterances

Pcc is a simple performance measure which can be calculated using
the following relation.

Pcc =
Ncc

NT
(5)

Table 1. The number of utterances and speakers for each accent
category.

Accent Number of Utterances Number of Speakers
USE 84 84
THA 63 41
RUS 49 32
HIN 62 39

VIE-YUH 101 69
Total 359 265
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Table 2. Comparison of various i-vector, GPPS and GMS based
systems. The results are given in Pcc and Cmin

llr .

Classifier Feature Pcc(%) Cmin
llr

SVM
GMS 53 2.03
GPPS 58 1.92

i-vector 56 1.77

NBC
GMS 47 2.12
GPPS 48 2.05

i-vector 52 1.97

SRC
GMS 49 2.00
GPPS 56 1.63

i-vector 41 2.08

where Ncc and NT denote the number of correctly classified utter-
ances and the total number of utterances in the test data set respec-
tively.

4.2.2. Log-Likelihood Ratio Cost

Log-Likelihood Ratio Cost (Cllr) is an application-independent per-
formance measure for recognizers with soft decisions output in the
form of log-likelihood-ratios. This performance measure, which has
been adopted for use in the NIST SRE, was initially developed for
binary classification problems such as speaker recognition. It is ex-
tended to multi-class classification problems such as language recog-
nition later in 2006 [24]. Cmin

llr represents the minimum possible
Cllr which can be achieved for an optimally calibrated system [24].
In this research we apply FoCal Multiclass Toolkit [26] to calculate
Cmin

llr .

5. RESULTS

In this section, the performances of nine developed systems are
evaluated and compared. The acoustic feature consists of 20 Mel-
Frequency Cepstrum Coefficients (MFCCs) including energy ap-
pended with their first and second order derivatives, forming a
60 dimensional acoustic feature vector. This type of feature is
very common in state-of-the-art i-vector based speaker recognition
systems. To have more reliable features, Wiener filtering, speech ac-
tivity detection [27] and feature warping have [28] been considered
in front-end processing.

For the evaluation, a one speaker hold out training-testing strat-
egy is adopted so that test speaker utterances are never included in
the training set. In other words, 265 (total number of speakers in the
database) independent experiments have been run. In each experi-
ment, all utterances of a new speaker are used as testing and the rest
of the utterances are used for training.

Table 2 lists the Pcc and Cmin
llr for all nine developed systems.

For the SVM classifier different kernels have been tested and Ta-
ble 2 shows only the best results obtained by the linear kernel. As
it can be seen from Table 2, both classifier types and utterance mod-
elling methods influence the recognition accuracy. While in SVM
and NBC classification algorithms the i-vector framework leads to
the most accurate recognition, for the SRC algorithm, GPPS pro-
vides the best results.

The results also show that the NBC algorithm is not effective
in this case. It can be due to high dimensionality of input features
which increases class conditional dependency violating the naive as-
sumption of the NBC(class conditional independence).

Table 2 also illustrates that the GPPS and the i-vector utterance
modelling approaches are more effective than the GMS method in

Table 3. Comparison of NBC, SVM and SRC after feature level fu-
sion. The results are given in Pcc and Cmin

llr .

Classifier Feature Pcc(%) Cmin
llr

NBC i-vector-GPPS-GMS 50 2.07
SVM i-vector-GPPS-GMS 56 1.84
SRC i-vector-GPPS-GMS 58 1.63

this non-native accents recognition task.

5.1. Feature Level Fusion

Many literatures reported the effectiveness of score level fusion [3,
29]. However, this type fusion requires a development data set which
is not available in this task due to the limited number of utterances
per accent. In this paper, we employed feature level fusion requiring
only one learning stage while taking advantage of mutual informa-
tion [30]. In this type of fusion, the extracted i-vector, GPPS and
GMS of each utterance are concatenated to form a high dimensional
supervector representing the utterance. Table 3 lists the results of
NBC, SVM and SRC after feature level fusion. It shows that the
accuracy of accent recognition increases after the fusion when SRC
is applied for the classification. However, this improvement is not
observed when NBC or SVM are employed.

Table 4 illustrates the results of i-vector-GPPS-GMS-SRC sys-
tem as a confusion matrix. As it can be interpreted from this table,
the recognition accuracy for all accents is noticeably higher than the
chance level which confirms the efficiency of the proposed approach.

6. CONCLUSIONS

In this paper, we have investigated the effectiveness of the GMS,
GPPS and i-vector utterance representation approaches for accent
recognition on a spontaneous and real speech database formed by ex-
tracting English utterances with Russian, Hindi, American English,
Thai, Vietnamese and Cantonese accents from the NIST 2008 SRE
database. For each utterance modeling method, three different clas-
sifiers, namely SVM, NBC and SRC, have been employed to find
out suitable matches between the utterance modelling schemes and
the classifiers. The study results show that GPPSs and i-vectors are
more effective than GMS in this accent recognition task. Among
the employed classifiers, the best matches for i-vector and GPPS are
SVM and SRC respectively. Furthermore, feature level fusion was
found to be marginally effective in increasing the accent recognition
accuracy, when SVM or SRC were applied as classifiers.

Table 4. The confusion matrix of accent recognition for i-vector-
GPPS-GMS-SRC system. The results are given in percentage

Predicted
USE THA RUS HIN VIE-YUH

A
ct

ua
l

USE 65 4 7 6 18
THA 14 46 2 3 35
RUS 27 0 43 14 16
HIN 8 5 3 60 24

VIE-YUH 15 14 6 7 58
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