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ABSTRACT

The subspace Gaussian mixture model (SGMM) has been
exploited for cross-lingual speech recognition. The general
motivation is that the subspace parameters can be estimated
on multiple source languages and then transferred to the
target language. In this work, we investigate an extension to
SGMM, referred to as subspace mixture model (SMM), in
which subspace parameters on the target language are casted
as a linear mixture of the subspaces derived from source
languages. This approach reduces the number of SGMM
model parameters, while retaining the flexibility of subspace
learning on the target language. Experiments show that the
proposed SMM method outperforms SGMM significantly
when the target language has limited training data.

Index Terms— Subspace models, acoustic modeling,
cross-lingual speech recognition

1. INTRODUCTION

State-of-the-art speech recognition systems rely on a large
amount of transcribed data to robustly estimate HMM-GMM
acoustic models. These data can be easily obtained for rich-
resource languages such as English and Mandarin. However,
for languages with only limited speech and resources, the
acquisition of large data collections becomes both expensive
and challenging. The subspace Gaussian mixture model
(SGMM) [1, 2] has been proposed to deal with this data
sparseness. Instead of estimating GMM parameters directly,
SGMM learns lower-dimension subspaces which are able to
capture the main phonetic and speaker variability. The
subspaces can be shared across HMM states, which results
in a more compact representation and helps to shrink the
size of model parameters. Previous studies have shown that
SGMM can outperform the conventional GMM consistently,
especially when we have limited speech data for acoustic
modeling.

There has been considerable interest in using SGMM for
multilingual and cross-lingual acoustic modeling [3, 4, 5, 6].
In multilingual scenarios, the SGMM subspace parameters
are estimated based on combined statistics from multiple
languages [3]. This effectively gives us more data for

subspace learning and improves the robustness of parameter
estimation. Another application of SGMM is in cross-lingual
speech recognition where a group of source languages are
available. The general motivation is to improve the
performance on the target language which may be under-
resourced. On this aspect, Lu et al. proposed to estimate the
globally shared subspace parameters on the source
languages and transfer them to the target language [5].
However, since the subspace parameters are fixed for the
target system, this method may suffer from mismatch
between the source and target languages. To alleviate this
effect, a maximum a posterior (MAP) adaptation approach
was introduced in [6], where the source subspace serves as
prior for the subspace of the target language.

In this paper, we further develop this line of ideas and
propose the subspace mixture model (SMM) for cross-
lingual acoustic modeling. Specifically, for the target
language, SMM learns its subspace parameters through a
linear combination of the subspaces from source languages.
Cross-lingual speech recognition in this manner is attractive
since incorporating or eliminating new source languages is
easy to achieve. In contrast, the direct transfer [5] and MAP
[6] methods have to re-estimate the shared subspace
parameters on the source languages from scratch. Moreover,
compared with [5], SMM is a more flexible framework in
that the target language can tune its subspace, or
equivalently mixture coefficients, on the available training
data. We present maximum likelihood estimation (MLE), as
well as implementation considerations, for SMM. Our focus
is on the scenario where the target language has highly
limited training data. On the GlobalPhone corpus [7], we
experimented with two low-resource conditions with 1.2
hours and 3 hours of target language data respectively. The
proposed SMM method achieves consistent reduction on
WER compared with the SGMM baseline.

2. REVIEW OF SGMM

In conventional HMM-GMM acoustic models, the emission
probability of each state is modeled with a Gaussian mixture
model (GMM). In SGMM, each state or substate is also
represented with a GMM. The major difference is that
GMM means are derived from phonetic and speaker
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subspaces while mixture weights are from a set of weight
projections [1]. In addition, we have I covariance matrices
which are normally full rather than diagonal. Formally, on
each Gaussian index i, the phonetic and speaker subspaces
are iM and iN , the weight projection is iw , the
covariance matrix is iΣ . Then, the SGMM model for state
j on speaker s can be expressed as
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where ( ) Dtx is a D-dimension feature vector, m is a
substate of j, and i is a Gaussian component. The subspace
parameters, weight projections and covariance matrices are
shared by all the HMM states. SGMM has state-specific
parameters including substate vectors S

jmv and
substate mixtures jmc , where S is the dimension of the
phonetic subspace. The GMM means can be obtained from
phonetic subspace and substate vectors. To model speaker
variability, there is a speaker-specific offset to the mean
vector, derived from the speaker subspace iN and speaker
vector ( ) Tsv where T denotes the dimension of the
speaker subspace. In this work, we do not consider speaker
adaptive training for SGMM, and thus exclude the speaker
subspace from the model. It can be seen that the SGMM
parameters in fact span a subspace of the entire GMM
parameter space. The subspace parameters can be shared
and collaboratively estimated over multiple languages or
domains. Therefore, SGMM has been studied for
multilingual and cross-lingual speech recognition.

3. THE SUBSPACE MIXTURE MODEL

The general idea of cross-lingual SGMM [5] is shown in
Figure 1(a). The subspace parameters are estimated on the
source languages using multilingual SGMM [3], and then
used in acoustic modeling on the target language. The
parallel arrays indicate that the subspace of the source
languages and the subspace of the target language are
equivalent. In spite of promising results, this approach has
limitations. For instance, since the subspace is fixed for the
target language, we lose the flexibility of tuning subspace
parameters on the target language. Also, this manner
overemphasizes the generality of the source subspace, but
ignores the potential mismatch (channel conditions, noise
levels, speaking styles, etc) between the source and target
languages. More importantly, if we want to add or remove
source languages, we need to estimate the new source
subspace, which is expensive especially when there is
sufficient training data on the source languages.

Figure 1(b) depicts the motivation behind our SMM
method. Instead of learning one single source subspace,

(a) (b)
Figure 1: Illustrations for (a) cross-lingual SGMM and (b) SMM.
The markers on the arrays in (b), i.e., a_1, a_2 and a_3, represent
mixture weights for source languages.

SMM learns the subspace separately for each source
language. Then, the target subspace is formed by a linear
combination of the source subspaces. The multiple source
subspaces bear information regarding individual source
languages. The target language "assembles" its subspace
with the mixture weights based on its own acoustic
characteristics. Compared with cross-lingual SGMM, SMM
has a more flexible manner of subspace learning, while at
the same time reducing model parameters dramatically.

We examine the phonetic subspace firstly. For each
source language g, we model its i-th phonetic subspace
matrix ( )g

iM with the SGMM model. On the target language,
SMM derives the corresponding subspace iM by a linear
mixture of the source languages:
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where ( )g
ia is the mixture weight for ( )g

iM , L is the total
number of source languages.

In SMM, state-specific parameters jmv and jmc are
estimated similarly as in SGMM. Our goal here is on the
estimation of the mixture weights ia which has the
dimension of L. In the context of SGMM, ML estimation is
presented in [1] where the auxiliary function involving the
phonetic subspace is
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where
( )t
jmiγ is the occupancy of state j, substate m and

Gaussian i conditioned on the observation ( )tx from the
target language, i.e.,

( ) ( , , )| ( )t
jmi p j m i tγ x , the superscript

T represents matrix transpose.
By substituting Eq. (2) into (3), we get the SMM auxiliary

function w.r.t. the mixture weights:

( )SMM iQ a = 1
2

T T
i i i i ia b a aΦ (4)

where the 1L vector ia contains the mixture weights for
iM , the 1L vector ib is the first-order statistics collected

with state occupancy and its g-th element is
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The L L symmetric matrix iΦ is the second-order
statistics where the (l, g) element is:
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where jmiγ is the aggregated occupancy
( )

t
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iΦ is non-singular, we can take the derivative of ( )SMM iQ a
to be 0 and obtain ia as follows:
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However, in practice, iΦ may be singular or have poor
condition. Thus, we adopt a generalized solution for this
optimization problem, i.e., the function described
in [1]. ML estimation of ia based on expectation
maximization (EM) can be summarized as follows.

1) Initialize all the mixture weights to be 1 L
2) Collect statistics iΦ and ib according to Eq. (5) and (6),
using the source subspaces and current model parameters.
3) Update mixture weights ia via and get the
new phonetic subspace based on Eq. (2)
4)  Go to step 2 until converged.

In principle, we can apply SMM to the speaker subspace
and weight projections as well. But in low-resource cases,
the phonetic subspace takes a large proportion of SGMM
model parameters (see Section 4). Therefore, SMM is only
applied to the phonetic subspace in this work. During
optimization, we impose no constraints on ia . In fact, ia
can be constrained to be mixture probabilities, meaning that
its elements should sum up to 1. Also, to further improve
robustness, we can add to Eq. (4) a regularization factor,
such as 1l norm, on ia . We leave the investigation of these
constraints to our future work.

4. EXPERIMENTS

The performance of SMM is evaluated on the GlobalPhone
corpus [7] which has been widely used in multilingual
speech recognition. This corpus contains up to 19 languages.
We take German (GE) as the target language, and Spanish
(SP), Portuguese (PO), Swedish (SW) as the source
languages. Table 1 summarizes their statistics in terms of the
amount of training and development data.

Table 1. Dataset statistics and monolingual SGMM models.
SP PO SW GE

training (h) 17.6 22.7 17.4 14.9

dev (h) 2.0 1.6 2.0 2.0

# of states 2493 2310 2400 2527

# of substates 20k 20k 20k 20k

WER of SGMM 28.6 22.8 35.2 21.4

We firstly build monolingual SGMM models on
individual source languages to get the source subspaces. On
all the languages, we use a 13-dimensional MFCC front-end
including the C0 energy and its first, second derivatives with
per-speaker mean normalization. An LDA transform reduces
the feature dimension to 40, on which MLLT is applied. On
top of the LDA+MLLT context-dependent model, we
construct the ML-SAT system using fMLLR [8]. In the
speaker-adapted feature space, a universal background
model (UBM) is trained over all the source languages, by
clustering diagonal Gaussians in their ML-SAT acoustic
models. In our experiments, it is observed that a shared
UBM is critical for the performance of SMM, since this
guarantees the phonetic subspace to be aligned across source
languages. Starting from this common UBM, SGMM is
trained separately on each source language, with the fMLLR
transforms fixed. We set the number of Gaussians I = 400,
and the phonetic subspace dimension S = 40. For recognition,
fMLLR adaptation with respect to ML-SAT is performed on
the testing data, i.e., development set. The resulting testing
speaker transforms are used in SGMM decoding, together
with trigram language models. The performance of
monolingual SGMMs, as well as the number of tied states
and substates, are shown in Table 1. An SGMM model is
also trained on the complete German data. Because of
speaker adaptation and more language model training
materials, we obtain better WER than the results in [5].

4.1. Cross-lingual Experiments with 1.2 Hour data

On the target language German, two levels of data
sparseness are investigated. In the first case, 1.2 hour data is
selected from the complete training set. The ML-SAT model
and fMLLR transforms are estimated on this subset. The
baseline SGMM totally has 695 triphone tied states. During
SMM training, the same clustering decision tree from
SGMM is used. The phonetic subspace parameters are
estimated according to Section 3, while the others are
updated similarly with SGMM. Table 2 gives a comparison
between SGMM and SMM regarding the number of model
parameters when we have 4k substates. In SGMM, the
phonetic subspace takes almost half of all the parameters.
After applying SMM, parameters attached with the phonetic
subspace are reduced significantly, which helps to shrink the
total size of model parameters.

The recognition performance of SGMM and cross-lingual
SMM on the German development set is shown in Figure 2.
The SMM model exploiting multiple source languages

Table 2. Comparison of model parameters sizes between SGMM
and SMM. The number of substates is 4k.

SGMM SMM

all the parameters 13 10^6 6.6 10^6

phonetic subspace 6.4 10^6 1200
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results in considerably lower WER compared with the
SGMM baseline. The only exception is when the number of
substates is 1k. This is because the relatively small number
of SMM parameters cannot fully capture speech variability.
As we increase the number of substates, the best WER
achieved by SMM is 28.3%, while the best WER of SGMM
is 30.2%. Also, we observe from Figure 2 that removing one
of the source languages degrades the performance of SMM.
This indicates that the three source languages are
complementary with each other in constructing the phonetic
subspace of the target language.

4.2. Cross-lingual Experiments with 3 Hour data

In the second case, we increase the amount of training data
to 3 hours, on which the SGMM and SMM models are
trained. Both models share the same decision tree and have
1114 tied states. The phonetic subspace dimension S is still
40. Figure 3 shows the comparison between SGMM and
SMM in terms of WER. Again, the SMM model with all the
source languages (“SMM multi”) achieves the best WER
(24.0%), while the best WER of SGMM is 25.1%. However,
the gains of SMM over SGMM become less significant
compared with on the 1.2 hour training set. This is because
in SGMM the phonetic subspace now takes less than 2/5 of
the whole set of parameters. Moreover, excluding one of the
source languages degrades the performance of SMM, which
is consistent with what we observe on the 1.2 hour data.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we propose the subspace mixture model
(SMM) for cross-lingual speech recognition. This SMM
approach can effectively reduce the number of model
parameters in SGMM, which makes it suitable for under-
resourced target languages. Experiments with the Global-
Phone corpus show that SMM outperforms the SGMM
baseline significantly under two conditions of data
sparseness. As mentioned in Section 3, for  future  work, we

will extend SMM to speaker subspace and weight
projections, to further reduce the model size. Another focus
will be on investigating various forms of regularization on
the source language mixture weights. This is expected to add
sparsity to the mixture weights and enhance the robustness
of SMM estimation.
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