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ABSTRACT

We investigate multilingual modeling in the context of a deep
neural network (DNN) – hidden Markov model (HMM) hy-
brid, where the DNN outputs are used as the HMM state like-
lihoods. By viewing neural networks as a cascade of fea-
ture extractors followed by a logistic regression classifier, we
hypothesise that the hidden layers, which act as feature ex-
tractors, will be transferable between languages. As a corol-
lary, we propose that training the hidden layers on multiple
languages makes them more suitable for such cross-lingual
transfer. We experimentally confirm these hypotheses on the
GlobalPhone corpus using seven languages from three dif-
ferent language families: Germanic, Romance, and Slavic.
The experiments demonstrate substantial improvements over
a monolingual DNN-HMM hybrid baseline, and hint at av-
enues of further exploration.

Index Terms— Speech recognition, deep learning, neural
networks, multilingual modeling

1. INTRODUCTION

Recent years have seen a renewed interest in developing
speech technologies for a broad range of languages and
domains, encouraged by commercial and other forces and
enabled by newer techniques and improved understanding.
This naturally leads to techniques that attempt to transfer
knowledge between languages, since the major obstacle for
developing speech technology in a new language is the lack of
linguistic resources in form of (manually) transcribed audio,
pronunciation lexicon, and in-domain text for language mod-
eling. While the constraints on resources is a very practical
reason to look at multilingual techniques1, a more pragmatic
motivation is that by engineering such techniques we may
improve our understanding of the algorithms used as well as
the commonalities between different languages.

In this work we focus on multilingual acoustic modeling,
and assume that we have access to a pronunciation dictionary
and language model. Previous approaches in this direction
have included: constructing a universal phone set [1, 2, 3];
modeling a set of universal speech attributes, such as voicing,

1Here we do not use the term “multilingual” in the sense of code-
switching, but purely for techniques that can learn from multiple languages.

nasality and frication [4]; and mapping between phones of
different languages using some automated method that relies
on some predefined distance measure [5, 6, 7] or by manually
creating a mapping using acoustic phonetic knowledge [5].

The subspace Gaussian mixture model (SGMM) [8] has
been shown to be suitable for cross-lingual modeling without
requiring an explicit mapping between phone units in differ-
ent languages [9, 10]. In an SGMM, the emission densities of
a hidden Markov model (HMM) are modeled as mixtures of
Gaussians, whose parameters are factorized into a globally-
shared set that does not depend on the HMM states, and a
state-specific set. The global parameters may be thought of as
a model for the overall acoustic space, while the state-specific
parameters provide the correspondence between different re-
gions of the acoustic space and individual speech sounds. It
is the decoupling of these two aspects of modeling speech
data that makes the SGMM global parameters, which do not
directly depend on the phone units, suitable for sharing be-
tween different languages. This line of argument naturally
implies that training the SGMM global parameters using mul-
tiple languages makes them more suitable for transferring to
a new language, since multilingually-trained subspace param-
eters will necessarily provide better coverage of the acoustic
space. This is, in fact, what is observed in practice [10].

Deep neural networks (DNNs) also provide a decoupling
of intermediate representations of data and the correspon-
dence between the representations and the categories of in-
terest, albeit one that is very different from the decoupling
in SGMMs. The hidden layers of a DNN act as a cascade
of feature extractors [11, 12] and only the output layer pro-
vides the direct correspondence to the classes of interest. We
hypothesise that the hidden layers of a DNN may be transfer-
able between languages, in an analogous way to the SGMM
global parameters. This hypothesis is further supported by
our earlier work [13], in which we showed that layerwise
pretraining of deep networks using stacked restricted Boltz-
mann machines (RBMs) [14] is not sensitive to the choice of
language.

In this work, we start with a network that has been fine-
tuned on one language, and whose output layer corresponds
to tied context-dependent phone states in that language. We
then replace the output layer with that corresponding to an-
other language, borrowing the rest of the (hidden) layers, and
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finetune the whole network on the new language. This pro-
cess is repeated for several different languages. The networks
are used in a hybrid DNN-HMM setup, in which the DNN
outputs are used to provide scaled likelihood estimates for the
states of an HMM [15]. We see consistent gains in recogni-
tion accuracy from training the hidden layers using multiple
languages.

Previous uses of neural networks in cross-lingual acoustic
modeling have mainly focused on tandem approaches [16],
which use neural network outputs as discriminative features
for a GMM-HMM acoustic model. In such approaches, net-
works trained on a source language are used to provide fea-
tures for a target language [17, 18]. These features typically
improve on a competitive target language baseline when the
amount of transcribed audio in the target language is small
[19, 20].

Of these, the method of Thomas, et al. [20] is the closest
in spirit to our current work. That paper proposes a multi-
lingual tandem system where a 3-layer network with a nar-
row hidden layer — the bottleneck layer — is multilingually
trained by using a different output layer (corresponding to
context-independent phones) for each language. Two separate
networks, one using spectral (PLP) features and the other us-
ing modulation (FDLP) features, are trained and their combi-
nation is shown to improve over a baseline system trained on
1 hour of speech using PLP features. In the current work, we
use deeper networks with 7 layers that do not contain a bot-
tleneck layer; the network outputs correspond to tied triphone
states; the networks are trained on the same (MFCC) features
as the standard acoustic model; and we show improvements
over a monolingual hybrid DNN-HMM system.

2. DNNS FOR SPEECH RECOGNITION

We use the convention that a layer in a feedforward neural net-
work correspond to a matrix of connection weights between
two sets of neurons. We denote the input to the l-th layer by
ul−1, with u0 = ot, the acoustic observation at time t. The
output of the l-th layer, ul is obtained as:

ul = σ(Wlul−1 + bl), for 1 ≤ l < L,

where Wl is the weight matrix and bl is the additive bias
vector at the l-th layer; σ(x) = 1/(1+exp(−x)) is a sigmoid
non-linearity, also known as the activation function. The L-th
layer, also called the output layer, uses a softmax function to
obtain the posterior probability Pθ(y|ot) of each tied triphone
state y given the acoustic observation ot at time t:

Pθ(y|ot) =
exp(w>

LyuL−1 + bLy)∑
ỹ exp(w>

LỹuL−1 + bLỹ)
,

where w>
Ly is the y-th row of the weight matrix WL. To

obtain scaled likelihoods, the posterior probability estimates
produced by the network are divided by the prior probabilities
of the states y [15].

We use stochastic gradient descent to train DNNs, mini-
mizing a negative log posterior probability cost function over
the set of training examples O = {o1, . . . ,oT }:

θ∗ = arg min
θ
−

T∑
t=1

log Pθ(yt|ot),

where θ = {W1, . . . ,WL,b1, . . . ,bL} is the set of param-
eters of the network, and yt is the most likely state at time t
obtained by a forced alignment of the acoustics with the tran-
script.

While the basic idea was used in speech recognition in the
early 1990s [15], earlier uses of hybrid systems were mainly
limited to estimating scaled likelihoods for monophone states
using feedforward network with two layers [21] and recurrent
networks [22], owing to computational constraints. More re-
cently DNNs with up to 9 layers have been used with out-
puts corresponding to both monophone states [23] and tied
context-dependent states [24]. While training deep networks
directly results in a difficult optimization problem, an unsu-
pervised pretraining phase using greedy layer-wise training
of restricted Boltzmann machines [14] has been shown to give
good results. Following our earlier work [13], we use RBM-
based pretraining to initialize the DNN models.

3. MULTILINGUAL DNN TRAINING

One may view multilayered neural networks as a cascaded se-
quence of feature extractors followed by a logistic regression
classifier at the output layer. From this perspective, it is rea-
sonable to argue that the hidden layer feature extractors ought
to be transferable across domains and languages. It is this
simple idea that motivates the exploration in this paper.

A schematic for the training procedure of the multilin-
gual DNNs is shown in Figure 1. We initialize our networks
with stacked RBMs that are pretrained on a single language.
We found in our earlier work [13] that the choice of the lan-
guage used for RBM-based pretraining did not make a signif-
icant difference to the final result. In fact, all experiments re-
ported in this paper use DNNs that are initialized from stacked
RBMs trained on Polish. Starting from this, a softmax layer,
with randomly initialized weights and classes corresponding
to the tied triphone states in a given language, is added as the
final layer and the whole structure is finetuned on the chosen
language. Afterwards, the softmax layer is replaced by one
corresponding to a different language, with randomly initial-
ized weights, and finetuning is done for the next language.
This process is repeated for multiple languages.

A potential problem with the protocol followed here is
that this form of language-sequential training may lead to
more biased estimates. We see some indication of that in our
results. An alternative would be to train all the languages
simultaneously. Language-sequential training, nevertheless,
has a practical advantage: training a model for a new language
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Fig. 1. Multilingual training of deep neural networks.

does not require retraining any previously trained models for
other languages. Ideally, one would like the hidden layers
to converge to an optimized set of feature extractors that can
be reused across domains and languages. However, such a
study is inherently empirical, and variations of the techniques
reported here are currently under investigation.

4. EXPERIMENTS

We used the GlobalPhone corpus [25] for our experiments.
The corpus consists of recordings of speakers reading news-
papers in their native language. There are 19 languages from
a variety of geographical locations: Asia (Chinese, Japanese,
Korean), Middle East (Arabic, Turkish), Africa (Hausa), Eu-
rope (French, German, Polish), and Americas (Costa Rican
Spanish, Brazilian Portuguese). Recordings are made under
relatively quiet conditions using close-talking microphones;
however acoustic conditions may vary within a language and
between languages.

In this work we use seven languages from three differ-
ent language families: Germanic, Romance, and Slavic. The
languages used are: Czech, French, German, Polish, Brazil-
ian Portuguese, Russian and Costa Rican Spanish. Each lan-
guage has roughly 20 hours of speech for training and two
hours each for development and evaluation sets, from a total
of about 100 speakers. The detailed statistics for each of the
languages is shown in Table 1.

4.1. Baseline systems

For each language, we built standard maximum-likelihood
(ML) trained GMM-HMM systems, using 39-dimensional
MFCC features (C0-C12, with delta and acceleration coeffi-
cients), using the Kaldi speech recognition toolkit [26]. The
number of context-dependent triphone states for each lan-
guage is 3100 with a total of 50K Gaussians (an average of
roughly 16 Gaussians per state). The development set word
error rates (WER) for the different languages are presented
in Table 2. The results reported here are better than those in
our earlier work [13] because we used better LMs obtained

Table 1. Statistics of the subset of GlobalPhone languages
used in this work: the amounts of speech data for training,
development, and evaluation sets are in hours.

Language #Phones #Spkrs Train Dev Eval
Czech (CZ) 41 102 26.8 2.4 2.7
French (FR) 38 100 22.8 2.1 2.0
German (DE) 41 77 14.9 2.0 1.5
Polish (PL) 36 99 19.4 2.9 2.3
Portuguese (PT) 45 101 22.8 1.6 1.8
Russian (RU) 48 115 19.8 2.5 2.4
Spanish (SP) 40 100 17.6 2.0 1.7

from the authors of [3, 27]. We must stress that the ML
baseline results are presented here to serve as a point of ref-
erence, and not for direct comparison with the DNN results.
The scripts needed to replicate the GMM-HMM results are
publicly available as a part of the Kaldi toolkit2.

4.2. DNN configuration and results

For training DNNs, our tools utilize the Theano library [28],
which supports transparent computation using both CPUs and
GPUs. We train the networks on the same 39-dimensional
MFCCs as the GMM-HMM baseline. The features are glob-
ally normalised to zero mean and unit variance, and 9 frames
(4 on each side of the current frame) are used as the input to
the networks. All the networks used here are 7 layers deep,
with 2000 neurons per hidden layer. The initial weights for
the softmax layer were chosen uniformly at random: w ∼
U [−r, r], where r = 4

√
6/(nl−1 + nl) and nl is the num-

ber of units in layer l. Fine-tuning is done using stochastic
gradient descent on 256-frame mini-batches and an exponen-
tially decaying schedule, learning at a fixed rate (0.08) un-
til improvement in accuracy on cross-validation set between
two successive epochs falls below 0.5%. The learning rate is
then halved at each epoch until the overall accuracy fails to
increase by 0.5% or more, at which point the algorithm ter-
minates. While learning, the gradients were smoothed with

2Available from: http://kaldi.sf.net

7321



Table 2. Development set results: vocabulary size is the intersection between LM and pronunciation dictionary vocabularies;
perplexity (PPL) figures are obtained considering sentence beginning and ending markers; and for multilingual DNNs we show
the order of the languages used to train the networks.

Language Vocab PPL ML-GMM DNN Multilingual DNN
WER(%) WER(%) Languages WER(%)

CZ 29K 823 18.5 15.8 — —
DE 36K 115 13.9 11.2 CZ →DE 9.4
FR 16K 341 25.8 22.6 CZ →DE →FR 22.6
SP 17K 134 26.3 22.3 CZ →DE →FR →SP 21.2
PT 52K 184 24.1 19.1 CZ →DE →FR →SP →PT 18.9
RU 24K 634 32.5 27.5 CZ →DE →FR →SP →PT →RU 26.3
PL 29K 705 20.0 17.4 CZ →DE →FR →SP →PT →RU →PL 15.9

Fig. 2. Mono- and multi-lingual DNN results on Polish. The
languages are added left-to-right starting with Czech and end-
ing with Polish. Hence ‘+FR’ corresponds to the schedule CZ
→DE →FR →PL.

a first-order low-pass momentum (0.5). For the multilingual
DNNs, an initial learning rate of 0.04 is used.

A comparison of the WERs obtained by the monolingual
and multilingual DNNs for the different languages in Table 2
supports our hypotheses: the hidden layers are indeed trans-
ferable between languages, and training them with more lan-
guages, by and large, makes them better suited for the target
languages. These trends are shown in greater detail for Polish
(in Figure 2) and Russian (in Table 3).

It is important to note that the different systems do not
control for the amount of data; a system with more languages
is trained on more data and some of the performance gains
may well be attributed to that. However, we also notice that
just adding more data may not always improve results. For
example, in Figure 2 we see worse performance by adding
Portuguese, and the Czech data did not lower WER for either
Polish or Russian. This may indicate a need for better cross-
corpus normalization, for example, using speaker adaptive
training. Conversely, this may also indicate that the sequential
training protocol followed here is suboptimal. In fact, for the
systems shown in Figure 2, training on Russian after Spanish

Table 3. Mono- and multi-lingual DNN results on Russian.

Languages Dev Eval
RU 27.5 24.3
CZ →RU 27.5 24.6
CZ →DE →FR →SP →RU 26.6 23.8
CZ →DE →FR →SP →PT →RU 26.3 23.6

and then on Polish leads to similar WER as when Portuguese
is used for finetuning after Spanish. These issues are currently
under investigation.

5. DISCUSSION

We presented experiments with multilingual training of hy-
brid DNN-HMM systems showing that training the hidden
layers using data from multiple languages leads to improved
recognition accuracy. The results are very promising and
point to areas of future work: for instance, determining if the
number of layers in the network has an effect on these results.
The notion of deep neural networks performing a cascade of
feature extraction, from lower-level to higher-level features,
provides both an explanation for the observed effect, as well
as the inkling that the effect may be more pronounced for
deeper structures. There are also practical engineering issues
to consider: checking whether a simultaneous training, where
the randomization of observations is done across all lan-
guages in consideration, improves on the current sequential
protocol; experimenting with transformations of the feature
space as well as with discriminative features, some of which
may enhance or mitigate this effect; and experimenting with
a broader set of languages.
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