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ABSTRACT

This paper describes the development of a Latvian speech-to-
text (STT) system at LIMSI within the Quaero project. One
of the aims of the speech processing activities in the Quaero
project is to cover all official European languages. However,
for some of the languages only very limited, if any, training
resources are available via corpora agencies such as LDC and
ELRA. The aim of this study was to show the way, taking
Latvian as example, an STT system can be rapidly developed
without any transcribed training data. Following the scheme
proposed in this paper, the Latvian STT system was devel-
oped in about a month and obtained a word error rate of 20%
on broadcast news and conversation data in the Quaero 2012
evaluation campaign.

Index Terms— Speech recognition, Latvian, under-
resourced language

1. INTRODUCTION

The Quaero project (www.quaero.org) aims at developing
technologies for automatic analysis and classification of mul-
timedia and multilingual documents. Automatic speech pro-
cessing is one of the main axes of this project and state-of-
the-art speech-to-text (STT) systems are being developed for
all official European languages [1]. For some languages, like
English, French or German, there is no lack of transcribed and
labeled speech corpora and text data that can be used for train-
ing. However this is not the case for many other languages as,
for example, Hungarian, Bulgarian, Slovak or Latvian. For
many of those languages no transcribed acoustic data exist
and classical approaches for acoustic model (AM) training
can not be applied. Latvian is one such language, for which
no ready-to-use audio and text corpora exist and, to the best
of our knowledge, no large vocabulary speech recognition
system has previously been developed. Using Latvian as an
example, this work shows how a state-of-the-art STT system
can be developed for a low-resourced European language.
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There are two presuppositions in the presented approach.
First, it is assumed that it is possible to find some amounts
of untranscribed raw audio (Internet radios, podcasts, etc.)
and text data (news, blogs, etc.) on the Internet. This data
can be used in an unsupervised manner for acoustic model
training [2, 3]. Second, it is supposed that there already exist
acoustic models for other languages, that cover phones simi-
lar to the language in question. These borrowed phone mod-
els are used to decode the untranscribed data (cross-language
porting) and the one-best decoding hypotheses are taken as
the ground truth to improve and refine the AMs for the lan-
guage under development. Multiple decoding passes over un-
transcribed audio data are performed to enhance the models,
to switch from phone to triphone based AMs, from gender
independent to gender dependent ones, to add MLP acoustic
features and neural network language models (LMs), etc. An
important contribution of this paper is to show that such an
approach, based on coherent application of existing tools, al-
lowed quick development of an STT system for a language
like Latvian, with a word error rate (WER) of 20% on broad-
cast news (bn) and broadcast conversation (bc) data.

Since the latter part of 1990’s [4, 5], interest in the tran-
scription of broadcast data (often called ’found data’) has
been growing. Some of the dimensions being addressed are
wider content, that is covering more interactive broadcasts
(generally called ’broadcast conversation’), or varied web
data (podcasts, lectures), extended language coverage, and
extended use of unsupervised training methods [2, 6].

Rapid development of STT systems for new languages has
recently received a lot of attention [7, 8]. A number of ap-
proaches to vocabulary and dictionary generation, LM data
collection and AM training were proposed (e.g. [9, 10, 11,
12]). One can argue that the last issue is often the most crit-
ical for rapid STT system development for a new language.
As such, multilingual approaches to acoustic model training
are currently a popular research direction [13, 14, 15, 16, 17].

In this paper it is shown that, even without any tran-
scribed data available for the language in question, a rather
straightforward approach that combines cross-lingual porting
of initial seed models and uses existing acoustic and lan-
guage model training tools, can be successfully used to build
a state-of-the-art STT system for broadcast data in under a
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Text corpus period # sentences # words
radio1 2008-2011 92k 1.6M
news1 2010-2011 34k 0.9M
news2 2000-2011 3.4M 85.3M
news3 2003-2011 2.1M 54.8M
total 2000-2011 5.6M 142.6M

Table 1. Data size of available Latvian text corpora after
normalization.

LM wgt ppl 1gr 2gr 3gr 4gr
news2 0.44 907 16.2 48.6 26.4 8.8
news3 0.31 961 19.0 49.0 24.5 7.5
radio1 0.16 1995 49.2 40.3 8.7 1.9
news1 0.09 2583 54.0 37.9 6.9 1.2
int 4gr - 721 13.8 46.8 28.8 10.6
int 3gr - 741 13.8 46.8 39.4 -
int 2gr - 914 14.1 85.9 - -

Table 2. Interpolation weights (wgt), perplexities with com-
ponent LMs (ppl) and hit-rates on dev12 set for LMs trained
on 4 subcorpora separately and after interpolation.

month.
2. LATVIAN DATA

Latvian is a Baltic language, spoken by about 1.5-2 million
people. It is a highly inflective language with many word-
forms corresponding to one lemma. Latvian can be consid-
ered as an under-resourced language as there are very few
available audio and text corpora. To our knowledge, there
are no available Latvian audio corpora in the LDC catalog or
other sources for large vocabulary continuous speech recog-
nition. Raw (untranscribed) broadcast audio data was thus
crawled from the Internet. Luckily, quite a lot of Latvian au-
dio data (over 800 hours) were found.

Concerning text data, there exist corpora available online,
such as the Balanced corpus of modern Latvian and Parlia-
ment sessions transcripts. As the STT task in the Quaero
project addresses the automatic transcription of broadcast
news and broadcast conversation data, these corpora do not
seem to be of particular interest and, in addition, they are
accessible only via a search interface. The LM training
data were thus collected from the Internet with the focus on
broadcast news and interview transcripts. These data were
subsequently normalized and re-cased following [18].

The sizes of text subcorpora after normalization are given
in Table 1. The news3 corpus has some intersection with the
news2 as both Internet resources sometimes presented news
provided by the same news agency. Instead of filtering text
data, it was decided to keep all of the texts. As the final n-
gram LM is trained as interpolation of n-gram LMs trained
independently on all the four subcorpora, this issue is handled
at the level of interpolation weights.

model projection size hidden size
NNLM 1 250 450
NNLM 2 200 500
NNLM 3 220 430
NNLM 4 300 500

Table 3. Common parameters of NNLMs for different lan-
guages in the Quaero 2012 evaluation campaign.

All data predate August 2011, which corresponds to the
beginning of the development/test data period for the Quaero
2012 evaluation. No data after this date were collected.

3. LANGUAGE MODELS

3.1. Baseline language models

The recognition vocabulary is chosen as the one consisting of
all words across 4 merged normalized subcorpora that occur
at least 3 times. The size of this vocabulary is 560766 words
and the out-of-vocabulary (OOV) rate on the Quaero 2012
development set (dev12) is 0.5%.

Interpolation weights (wgt), LM perplexities (ppl) and hit-
rates (1gr, 2gr, 3gr and 4gr) with this vocabulary are pre-
sented in Table 2. For the interpolated models results are also
given for the lower-order n-gram LMs (in the last three rows
for the interpolated 4-gram, 3-gram and 2-gram LMs).

It is worth noticing that, due to the inflective nature of
the Latvian language and the relatively small amount of LM
training data, the 4-gram hit rate is rather low, as well as the
difference in perplexity between 4-gram and 3-gram LMs.

3.2. Neural network language models

Neural network language models (NNLMs) were also trained
on Latvian data. These are four-gram feed-forward NNLMs
that make use of a shortlist at the output layer [19, 20].
The shortlist size is 12k words. Four feed-forward shortlist
NNLMs were built for each corpus and interpolated together.
Each of four NNLMs differs in sizes of projection and hid-
den layers and uses slightly different resampling of training
data (see Table 3). The perplexity results for individual
NNLMs and in interpolation with the baseline 4-gram LM
are presented in Table 4. A thorough description of NNLM
configurations may be found in [21].

4. PRONUNCIATION MODELING

The Latvian orthography is based on Latin. The vowel letters
A, E, I and U with a macron (Ā, Ē, Ī and Ū) are long versions
of corresponding short counterparts. The letters C, S and Z,
that in unmodified form are pronounced [ts], [s] and [z] re-
spectively, with a caron (Č, Š and Ž) are pronounced as [tS],
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model perplexity weight
4gr LM 721 0.29
NNLM1 675 0.17
NNLM2 671 0.18
NNLM3 677 0.17
NNLM4 668 0.19
4 NNLMs 622 -
4 NNLMs + 4gr LM 577 -

Table 4. LM perplexities (stand-alone and in interpolation)
on the Quaero dev12 data.

[S] and [Z]. The letters Ģ, Ķ, Ļ and Ņ that are written with a
cedilla (or little ’comma’ placed above the lowercase “g”) are
the palatalized versions of G, K, L and N and correspond to
the sounds [Í], [c], [L] and [ñ].

Latvian spelling has almost perfect correspondence be-
tween graphemes and phonemes and every phoneme corre-
sponds to its own letter. Latvian orthography has nine di-
graphs (seven vowels and two consonants), which are written
as ai, au, ei, ie, iu, ui, oi, dz and dž. Corresponding phone
units were explicitly modeled. Standard Latvian has fixed ini-
tial stress.

According to the rules mentioned above a simple grapheme-
to-phoneme (g2p) script was developed for Latvian. The
dictionary includes 42 different phonetic units, namely 26
consonants, 9 vowel phonemes and 7 diphthongs.

5. ACOUSTIC MODELING

As no labeled Latvian acoustic data was available for training,
seed models from other languages, namely English, French
and Russian were used for bootstrapping Latvian acoustic
models. These models are used to decode untranscribed Lat-
vian acoustic data, from which a first set of Latvian acoustic
models were built. As it was mentioned above, the unseg-
mented acoustic data was collected from Latvian Internet
radio sources. At each iteration, a larger set of audio data was
decoded with the previous system, and the hypotheses were
used as ground truth for training the next set of models [6, 18].

Table 5 summarizes the audio data used in successive
acoustic model sets along with the model sizes. In the first
4 iterations decoding was done with models using PLP+F0
features, whereas the last decoding was done using models
with MLP+PLP+F0 features.

As described in [22] the acoustic models are tied-state,
left-to-right 3-state HMMs with Gaussian mixture observa-
tion densities (typically 32 components). The triphone-based
phone models are word-independent, but position-dependent.
The states are tied by means of a decision tree. Both gender-
independent and gender-dependent models were tested as
well as different sized silence models (96 or 1024 Gaussians).

Iteration #audio files duration (hours) #contexts
1 1000 63 45
2 2633 156 14384
3 8770 521 20631
4 12983 769 23760
5 12983 783 26161

Table 5. Acoustic training data and triphone coverage.

6. STT SYSTEM DEVELOPMENT

STT system development initially focused on training acous-
tic models for Latvian, and made use of the interplated n-
gram LMs, summarized in Table 2.

Context and gender independent PLP-based seed models
borrowed from English, French and Russian were used for
the first iteration over the training data. This PLP analysis
has been used in all LIMSI STT systems since 1996 and is
described in [22]. Using these acoustic models directly to
decode the Latvian development data (dev12) resulted in a
WER of about 74%.

Context-dependent, gender-independent models were
trained during the second iteration on about 150 hours of
audio data. With these updated AMs, covering about 14k
phone contexts a WER of 53% was obtained.

Gender and context-dependent AMs were then trained
during the third training iteration. Gender-independent mod-
els serve as priors for Maximum a Posteriori (MAP) esti-
mation of gender-dependent models. The gender labels are
produced automatically, by the audio partitioner [23]. These
models were trained on about 500 hours of audio data as
shown in Table 5. More data were used in the fourth iteration,
and a larger number of phones in context were modeled.

Table 6 gives recognition results at different stages of
acoustic model development (that is after several decoding it-
erations). In this table CI WER stands for the case-insensitive
WER and CS WER corresponds to the case-sensitive WER. It
can be seen that the size of the silence model does not have
much influence on the STT performance. Gender-dependent
(GD) models (models 3, 4, 7, 8) slightly improve over the
gender-independent (GI) ones (models 1, 2, 5, 6).

Although the MLP features were not used during training
at the fourth iteration, the addition of MLP features to the PLP
ones at the testing phase significantly improved the results, by
almost 10% absolute (models 5, 6, 7, 8). The MLP features
are based on the Bottle-Neck architecture [24] and the MLP
parameters that existed for another language (in this case Rus-
sian) were borrowed, as it was done with phone models at the
first training iteration.

It should be noted that the recognition results depend on
the decoder parameters. The parameters used with all the
models in Table 6 were kept the same and were not tuned for
each set of models individually. Thus, for example, a big gain
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model GD MLP silence WER
CI CS

1 96 40.4 42.5
2 1024 40.4 42.6
3

√
96 39.4 41.7

4
√

1024 38.8 41.2
5

√
96 28.4 31.5

6
√

1024 27.9 31.1
7

√ √
96 28.1 31.2

8
√ √

1024 27.4 30.6

Table 6. Latvian STT results on dev12 set with context-
dependent AMs from successive training interations.

dev12 perplexity CI WER CS WER
4gr LM 721 27.4 30.6
4 NNLMs + 4gr 577 25.9 29.1

Table 7. Recognition results with NNLMs (with the model 8).

with MLP features may be due to a better fit of the decoding
parameters with the MLP+PLP+F0 based AMs.

The best STT results are obtained with context and gender
dependent AMs that use MLP+PLP+F0 features (model 8).

The 4-gram lattices generated with this model and the
baseline 4-gram LM for the test data were rescored with the
neural network models. This resulted in an additional gain
of about 1.5% absolute, as presented in Table 7. The NNLMs
are used at the test phase and never during training due to high
time costs and the simple 1-pass decoding of the training data
runs in approximatively real-time.

As the last fifth iteration over the training data, a differ-
ent weaker silence model was used in the dictionary, that
kept strict separation between silence, filler word and breath
events. The new AMs were trained after re-decoding of the
training data with MLP+PLP+F0 based models. The results
are presented in Table 8. The last row (12+NNLM) corre-
sponds to the application of the neural network LMs on test
data lattices, generated with the best model 12.

model GD MLP silence WER
CI CS

9
√

96 26.9 30.2
10

√
1024 26.1 29.5

11
√ √

96 26.0 29.3
12

√ √
1024 25.2 28.7

12+NNLM
√ √

1024 23.6 27.0

Table 8. Latvian STT results on dev12 set with updated
PLP+MLP+F0 AMs from iteration 5.

dev12 CI WER CS WER
1st pass 21.6 24.7
2nd pass 20.4 23.3
+ NNLMs 18.8 21.7

Table 9. Latvian STT results on dev12 data with tuned de-
coder parameters and CMLLR/MLLR adaptation.

Case-Insensitive Case-Sensitive
WER NCE WER NCE
20.2 0.213 23.4 0.201

Table 10. Latvian STT results on Quaero 2012 eval data.

7. 2012 QUAERO EVALUATION

The aim of experiments reported above was to compare dif-
ferent AM configurations and to track progress. Thus, the
decoding parameters were not optimized for each individual
model and only one decoding pass was used for speed. The
decoder parameters, such as LM score scale, word and silence
insertion penalties, of a system for the submission to the eval-
uations must be tuned on development data.

In preparation for the Quaero 2012 evaluation, the de-
coder parameters were tuned on dev12 data. This system also
makes use of two passes of decoding with unsupervised CM-
LLR/MLLR adaptation [25, 26], as compared to the simple
one-pass strategy used during training. The results with the
model 12 (see Table 8) with the parameters tuned at each pass
are given in Table 9.

Finally, results with the STT system submitted to the
Quaero 2012 evaluation campaign are presented in Table 10.

8. CONCLUSIONS

The approach presented in this paper was used to develop a
Latvian STT system in a short time. The only supervision
consists in mapping of Latvian phones to the ones existing in
other languages to select cross-lingual seed models, text nor-
malization and grapheme-to-phoneme conversion. The latter
is very straightforward for Latvian and we expect it could eas-
ily be substituted with a graphemic model. The Latvian STT
system was rapidly developed without use of an transcribed
audio training data. Coherent iterative application of exist-
ing tools to untranscribed Latvian audio data led to a reduc-
tion from the initial word error rate of 74% at the first pass
down to 19% at the fifth training interation. Only the Quaero
2012 development data, split evenly between broadcast news
and broadcast conversation, had transcriptions. This LIMSI
Latvian STT system, developed in about a month period, ob-
tained a WER of 20.2% in the Quaero 2012 STT evaluation.
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