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ABSTRACT 
 

In the deep neural network (DNN), the hidden layers can be 

considered as increasingly complex feature transformations and the 

final softmax layer as a log-linear classifier making use of the most 

abstract features computed in the hidden layers. While the log-

linear classifier should be different for different languages, the 

feature transformations can be shared across languages. In this 

paper we propose a shared-hidden-layer multilingual DNN (SHL-

MDNN), in which the hidden layers are made common across 

many languages while the softmax layers are made language 

dependent. We demonstrate that the SHL-MDNN can reduce errors 

by 3-5%, relatively, for all the languages decodable with the SHL-

MDNN, over the monolingual DNNs trained using only the 

language specific data. Further, we show that the learned hidden 

layers sharing across languages can be transferred to improve 

recognition accuracy of new languages, with relative error 

reductions ranging from 6% to 28% against DNNs trained without 

exploiting the transferred hidden layers. It is particularly 

interesting that the error reduction can be achieved for the target 

language that is in different families of the languages used to learn 

the hidden layers.  

 

Index Terms— deep neural network, CD-DNN-HMM, 

multilingual speech recognition, multitask learning, transfer 

learning 

 

1. INTRODUCTION 
 

The context-dependent deep neural network hidden Markov 

models (CD-DNN-HMMs) have outperformed the discriminatively 

trained conventional Gaussian mixture model (GMM) HMMs in 

many large vocabulary speech recognition (LVSR) tasks [1]-[11]. 

The DNN can be considered as a model that learns a complicated 

feature transformation (through many layers of nonlinearity in the 

hidden layers) and a log-linear classifier (through the softmax layer) 

jointly [4]. In most existing systems, the feature transformation 

determined by the hidden layers is learned from monolingual data. 

In this paper we propose a shared-hidden-layer multilingual 

DNN (SHL-MDNN), in which the hidden layers are shared across 

many languages while the softmax layers are language dependent. 

The shared hidden layers (SHLs) and the separate softmax layers 

are jointly optimized using a multilingual training set. We can 

consider the SHLs as a universal feature transformation that works 

well for many languages. 

The SHL-MDNN and its training procedure is an instance of 

the multi-task learning [12], with which multiple related tasks 

(LVSR systems for different languages) are trained simultaneously 

and benefit from each other. This implies that the SHL-MDNN can 

outperform the monolingual DNNs trained using only the language 

specific data, for all the languages decodable with the SHL-MDNN. 

More interestingly, the universal feature transformation 

represented by the SHLs in the SHL-MDNN can be transferred to 

boost the performance of other (both resource-limited and 

resource-rich) languages not used in training the original SHL-

MDNN. This is called cross-lingual model transfer and is a special 

case of the transfer learning. For a resource-limited language, we 

just reuse the SHLs from the SHL-MDNN and only tune the 

softmax layer, which can be stacked to the existing SHL-MDNN to 

allow it to recognize new language. For resource-rich languages, 

additional error reduction can be obtained by further adjusting the 

whole DNN. In either case, the training time is significantly 

reduced by initializing the model using the SHLs extracted from 

the SHL-MDNN. 

We designed and conducted a series of experiments to evaluate 

the SHL-MDNN. We used four European languages to learn the 

SHL-MDNN and used English and Chinese as the target languages 

for cross-lingual model transfer. We demonstrate that the SHL-

MDNN can reduce word error rate (WER) by 3-5% relatively, for 

all the four European languages used to train the SHL-MDNN, 

over the monolingual DNNs trained using only the language 

specific data. The SHL-MDNN also reduces WERs by 6%-28% 

relatively for English and Chinese LVSR systems through cross-

lingual model transfer, with 3 to 100+ hours of target language 

training data, even though Chinese is very different from the 

European languages. While gains were only observed on resource-

limited languages in most multilingual or cross-lingual research 

works, our results highlight the unique advantage of the SHL-

MDNN that the performance of both resource-rich and resource-

limited languages can be improved. 

The rest of the paper is organized as follows. In Section 2 we 

describe the SHL-MDNN in detail and show that it can increase 

recognition accuracy for all languages used in training the SHL-

MDNN. In Section 3 we illustrate the cross-lingual model transfer 

and its benefit on training LVSR systems for new languages. We 

discuss the related work in Section 4 and conclude the paper in 

Section 5. 

 

2. SHARED-HIDDEN-LAYER MULTILINGUAL DNN 
 

Figure 1 depicts the architecture of the proposed SHL-MDNN. In 

this architecture, the input and hidden layers are shared across all 

the languages the SHL-MDNN can recognize, and can be 

considered as a universal feature transformation (or front-end). The 
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softmax layers, however, are not shared. Instead, each language 

has its own softmax layer to estimate the posterior probabilities of 

the senones (tied triphone states) specific to that language. 
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Figure 1: Architecture of the shared-hidden-layer multilingual 

DNN 

 

As usual, the input layer covers a long contextual window of 

the acoustic feature (e.g., MFCC or log filter bank) frames. Since 

the shared hidden layers are to be used by many languages, 

language specific transformations such as HLDA cannot be applied. 

This requirement will not limit the performance of the CD-DNN-

HMM, though, because any linear transformation can be subsumed 

by the DNN as indicated in [4]. 

The key to the successful learning of the SHL-MDNN is to 

train the model for all the languages simultaneously. When batch 

training algorithms, such as L-BFGS or the Hessian free algorithm 

[8], are used, this is trivial since all the data will be used in each 

update of the model. However, if mini-batch training algorithms, 

such as the mini-batch stochastic gradient ascent (SGA), are used, 

it means each mini-batch should be drawn from all the training 

data available. This can be efficiently accomplished by 

randomizing the training utterance list across the languages before 

feeding it into our DNN training tool. 

The SHL-MDNN can be pretrained in either supervised or 

unsupervised way. In this study we have adopted the unsupervised 

pre-training procedure used in our previous study [1]. This is 

because the unsupervised pretraining does not involve the 

language-specific softmax layer and so can be carried out easily 

without any modification of our existing tool. 

The fine-tuning of the SHL-MDNN can be carried out using 

the conventional backpropagation (BP) algorithm. However, since 

a different softmax layer is used for each different language, the 

algorithm needs to be adjusted slightly. When a training sample is 

presented to the SHL-MDNN trainer, only the shared hidden layers 

and the language-specific softmax layer are updated. Other 

softmax layers are kept intact. The SHLs serve as a structural 

regularization to the model and the entire SHL-MDNN and its 

training procedure can be considered as an example of multi-task 

learning. 

After being trained, the SHL-MDNN can be used to recognize 

speech of any language used in the training process. By sharing the 

hidden layers in the SHL-MDNN and by using the joint training 

strategy, we can improve the recognition accuracy of all the 

languages decodable by the SHL-MDNN over the monolingual 

DNNs trained using data from individual languages only. 

We evaluated the SHL-MDNN on a Microsoft internal speech 

recognition task. The training set contains 138-hour (hr) French 

(FRA), 195-hr German (DEU), 63-hr Spanish (ESP), and 63-hr 

Italian (ITA) speech data. The SHL-MDNN used in the experiment 

has 5 hidden layers, each with 2048 nodes. The input to the DNN 

is 11 (5-1-5) frames of the 13-dim MFCC feature with its 

derivatives and accelerations. For each language, the output layer 

has 1.8k senones determined by the GMM-HMM system trained 

with the maximum likelihood estimation (MLE) on the same 

training set. The SHL-MDNN was initialized using the 

unsupervised DBN-pretraining procedure, and then refined with 

BP using senone labels derived from the MLE model alignment. 

The trained DNNs are plugged in the CD-DNN-HMM framework 

designed for LVSR [1]. 

Table 1: Compare Monolingual DNN and Shared-Hidden-Layer 

Multilingual DNN in WER (%) 

 FRA DEU ESP ITA 

Test Set Size (Words) 40k 37k 18k 31k 

Monolingual DNN (%) 28.1 24.0 30.6 24.3 

SHL-MDNN (%) 27.1 22.7 29.4 23.5 

Relative WER Reduction (%) 3.6 5.4 3.9 3.3 

 

Table 1 compares the word error rate (WER) obtained on the 

language specific test sets using the monolingual DNN (trained 

using only the data from that language) and the SHL-MDNN 

(whose hidden layers are trained using data from all four 

languages). From the table we can observe that the SHL-MDNN 

outperforms the monolingual DNN with a 3-5% relative WER 

reduction across all the languages. Note that when training 

monolingual DNNs, we shuffled the training utterances as well and 

adopted the same epoch numbers per language as in SHL-MDNN. 

Therefore, we ascribe the gain of SHL-MDNN to cross-language 

knowledge. It is encouraging that even for FRA and DEU, which 

have more than 100 hours of training data, SHL-MDNN can still 

provide improvement. This is not the only advantage of the SHL-

MDNN. For example,  since multiple languages are simultaneously 

decodable with its unified DNN structure, the SHL-MDNN makes 

multilingual LVSR easy and efficient. 

 

3. CROSS-LINGUAL MODEL TRANSFER 
 

The shared hidden layers (SHLs) extracted from the multilingual 

DNN can be considered as an intelligent feature extraction module 

jointly trained with data from multiple source languages. As such 

they carry rich information to distinguish phonetic classes in 

multiple languages and can be carried over to distinguish phones in 

new languages.  

The procedure of cross-lingual model transfer is simple. We 

extract the SHLs from the SHL-MDNN and add a new softmax 

layer on top of it. The softmax layer’s output nodes correspond to 

the senones in the target language. We then fix the hidden layers 

and only train the softmax layer using training data from the target 

language. If enough training data is available, additional gains may 

be achieved by further tuning the entire network. 

To evaluate the effectiveness of cross-lingual model transfer, 

we used American English (ENU) (phonetically close to the 
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European languages used to train the SHL-MDNN) and Mandarin 

Chinese (CHN) (far away from the European languages) as the 

target languages and ran a series of experiments. The ENU test set 

consists of 2286 utterances (or 18k words) and the CHN test set 

has 10510 utterances (or 40k characters). 

 

3.1. Hidden Layers Are Transferable 
 

The first question is whether the hidden layers are transferable to 

other languages. To answer this question, we assume we have 

access to 9 hours of ENU training data (55737 utterances). We 

have several choices in building the ENU CD-DNN-HMM system. 

As shown in Table 2 the baseline DNN is trained solely using the 

9-hr ENU training set. With this approach we only achieved a 

WER of 30.9% on the ENU test set. An alternative approach is to 

leverage the hidden layers (feature transformation) learned from 

other languages. In this experiment we chose to use 138 hours of 

FRA training data to train a monolingual DNN. We then extracted 

the hidden layers of this DNN to be used in the ENU DNN. If we 

fix the hidden layers and only train the ENU specific softmax layer 

using the 9-hr ENU training data we obtain absolute 2.6% WER 

reduction (30.9%  27.3%) from the baseline DNN. If we retrain 

the whole FRA DNN using the 9-hr ENU data, we got a WER of 

30.6%, which is only slightly better than the 30.9% baseline WER. 

These results indicate that the feature transformation represented 

by the hidden layers in the FRA DNN can be effectively 

transferred to recognize the ENU speech. 

Table 2: Compare ENU WER with and without Using Hidden 

Layers (HLs) Transferred from the FRA DNN. 

 WER (%) 

Baseline (9-hr ENU) 30.9 

FRA HLs + Train All Layers 30.6 

FRA HLs + Train Softmax Layer 27.3 

SHL-MDNN + Train Softmax Layer 25.3 

 

We further transferred the shared hidden layers (SHLs) 

extracted from the SHL-MDNN described in Section 2 to train the 

ENU DNN. The last row in Table 2 indicates that the HLs 

extracted from the SHL-MDNN are more effective than that 

extracted from the FRA DNN when transferred to build the ENU 

DNN. In fact we got additional absolute 2.0% WER reduction 

(27.3%  25.3%) by doing so. Overall, by using the cross-lingual 

model transfer we got 4.6% absolute (or 18.1% relative) WER 

reduction from the baseline ENU DNN.  

 

3.2. Size of Target Language Training Data Matters 
 

In this section we examine the effect of multilingual DNN cross-

lingual model transfer when different sizes of target language 

training data (ENU, 3, 9 and 36 hours) are available. Table 3 

summarizes the results. From the table, we can observe that by 

using the transferred SHLs, we can consistently outperform the 

baseline DNNs that do not use cross-lingual model transfer. We 

can also observe that when different sizes of target languages are 

available, the best learning strategy is different. In this experiment, 

we can observe that when less than 10 hours of target language 

training data are available, the best strategy is to only train a new 

softmax layer. By doing so we got 28.0% and 18.1% relative WER 

reduction over the baseline DNNs, when 3 and 9 hours of ENU 

speech data are available, respectively. However, when the amount 

of training data is large enough, further adapting the whole DNN 

can provide additional error reduction. For example, when 36 

hours of ENU speech data are available, we got additional absolute 

0.8% WER reduction (22.4%  21.6%) by adapting all layers. 

Table 3: Compare the Effect of Target Language Training Set Size 

in WER (%) when SHLs Are Transferred from the SHL-MDNN 

ENU training data (#. Hours) 3 9 36 

Baseline DNN (no Transfer) 38.9 30.9 23.0 
SHL-MDNN + Train Softmax Layer 28.0 25.3 22.4 
SHL-MDNN + Train All Layers 33.4 28.9 21.6 
Best Case Relative WER Reduction (%) 28.0 18.1 6.1 

 

3.3. Transferring to Mandarin Chinese Is Effective 
 

To understand whether the effectiveness of the cross-lingual model 

transfer approach is sensitive to the language similarities between 

the source and the target languages, we used Mandarin Chinese 

(CHN) to simulate the second target language and applied the 

cross-lingual model transfer technique. Table 4 lists the character 

error rates (CERs) for both the baseline and the Multilingual-

boosted DNN when the size of Chinese training data varies. We 

can see that in all cases CER reduction is observed by using the 

transferred SHLs. Even if we have 139 hours Of CHN data we can 

still benefit from the SHL-MDNN with 8.3% relative CER 

reduction. Moreover, using only 36 hours of CHN data we can 

achieve 28.4% CER on the test set by transferring the SHLs from 

the SHL-MDNN. This is better than the 29.0% CER obtained with 

the baseline DNN trained using the 139 hours of CHN training 

data, a save of over 100 hours of CHN transcription effort. To 

achieve the results reported in this table, we only trained the 

softmax layers when less than 9 hours of CHN data are available 

and further retrained all layers when more 10 hours of CHN data 

are available. 

Table 4: Effectiveness of Cross-Lingual Model Transfer on CHN 

Measured in CER Reduction (%). 

CHN Training Set (Hrs) 3 9 36 139 

Baseline - CHN only 45.1 40.3 31.7 29.0 

SHL-MDNN Model Transfer 35.6 33.9 28.4 26.6 

Relative CER Reduction 21.1 15.9 10.4 8.3 

 

3.4. Using Label Information Is Important 
 

There is some evidence [13] in the computer vision community to 

suggest that features extracted using the unsupervised approach  

from a large amount of data are able to do classification tasks very 

well. This triggered some interests in the speech recognition 

community as it is much easier to obtain untranscribed speech data 

than transcribed ones for model training. Therefore, a related 

question is whether the label information is important for 

effectively learning the shared representation from the multilingual 

data. To answer this question, we compared the systems with and 

without using the label information when training the shared 

hidden layers. More specifically for the case without using the 

label information we used the multilingual DNN right after the pre-

training stage. We see from Table 5 that while there is a small gain 

by using pre-trained only multilingual DNN and adapting the 
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whole network with ENU data (30.9%  30.2%), the gain is 

significantly smaller than that obtained when label information is 

used (30.9%  25.3%). These results clearly indicate that labeled 

data are much more valuable than unlabeled data and using label 

information is critical in learning effective features from 

multilingual data. Note that the gain we got from using 

unsupervised knowledge transfer is significantly smaller than that 

reported in [14]. We believe this is partly because we used much 

larger data sets than that used in [14] for both the source and target 

languages. 

Table 5: Compare Features Learned from Multilingual Data with 

and without Using Label Information on ENU Data 

 WER (%) 

Baseline (9-hr ENU) 30.9 
SHL-MDNN + Train Softmax Layers (no label) 38.7 

SHL-MDNN + Train All Layers (no label) 30.2 

SHL-MDNN + Train Softmax Layers (use label) 25.3 

 

4. RELATION TO OTHER WORK 
 

The motivation of this study is to use knowledge learned from 

multiple languages to improve the performance of each individual 

language. In the conventional GMM-HMM ASR framework, data 

sharing across languages has to occur at a certain level of acoustic 

units such as monophones [15][16] or states [15][17][18]. The 

cross-language mapping needs to be established either by manual 

rules (e.g., the IPA universal phone set [15][16]) or by data-driven 

clustering [15][16][17][18]. Instead of enforcing the hard mapping, 

which could inaccurately represent the phonetic structure, the 

SHLs in the SHL-MDNN provides a natural structure to be shared 

across languages. Among the GMM-HMM-based approaches 

subspace GMMs [19] might be the closest to DNN. Since majority 

of the subspace GMM parameters are shared across the states, they 

can be naturally trained by data from other resources or languages. 

Only those state-specific parameters are trained for language-

specific models. However, the modeling power of Gaussian 

mixtures is significantly less than that of DNNs and so the features 

learned from the subspace GMMs would be much less selective 

and invariant than that from the DNNs. 

The value of cross-lingual transfer has also been investigated 

in multilayer perceptrons (MLPs) under the tandem framework 

[20][21]. It has been shown that to build a resource-limited tandem 

ASR system, one can use the MLP trained with a resource-rich 

language to improve the recognition accuracy. Recently, people 

have found out that resource-rich languages can also benefit from 

cross-lingual MLP features. Plahl et al [22] changed the network 

topology to the bottleneck structure (BN) and showed that the 

English or Chinese cross-lingual MLP features (trained with more 

than 2000 hours of English or Chinese data) outperform the 

French-only BN features on the French test set, even for the case 

where 230 hours of French training data are available. This is 

consistent with our findings in the CD-DNN-HMM framework: the 

benefit of out-of-language data is not limited to low-resource 

languages, and the degree of kinship between the source and the 

target language becomes unimportant if the neural network is 

powerful enough. While only a single source language is used to 

build the cross-lingual features in [22], a similar work [23] 

combines multiple languages to train a single BN-MLP using IPA 

universal phone symbols. Alternatively in [24], the entire BN-MLP 

is trained in a sequential way: first training with a source language, 

then the top layer will be replaced with the phoneme set for 

another source language for another weight retraining. Our 

multilingual DNN is similar to [24] in that we also keep the 

distinct language-specific top layers. But we adopt a parallel 

training strategy where all utterances from multiple languages are 

shuffled so that all the languages are trained simultaneously. Our 

experiments show that the parallel training strategy is better than 

the sequential training strategy. Another difference between ours 

and that in [24] is that we used senones as the DNN outputs and 

used DNNs instead of shallow MLPs. 

 The idea of DNN based multitask learning has been applied to 

the field of natural language processing (NLP). A DNN that 

incorporate several related NLP tasks, such as part-of-speech 

tagging, chunking, semantic role labeling (SRL), and named entity 

tagging, was proposed and trained jointly on these tasks [25]. They 

show that with multitask learning, SRL achieved state-of-the-art 

performance with only word vectors as the input to the DNN, 

while the current NLP community considers syntax as a mandatory 

feature for the SRL task. 

 

5. CONCLUSIONS 
 

We proposed a shared-hidden-layer multilingual DNN architecture 

in which the hidden layers are shared across multiple languages 

and serve as universal feature transformation. In the context of the 

CD-DNN-HMM LVSR framework, we verified the effectiveness 

of the proposed SHL-MDNN by the improved WERs in all of the 

four European languages used in training the SHL-MDNN. We 

also demonstrated that the hidden layers in the SHL-MDNN can be 

effectively transferred for use by and benefit for other languages, 

even if large volumes of training data are available for the target 

language or the target language is phonetically far from the source 

languages used to train the SHL-MDNN. 

The implication of this work is significant and far reaching. It 

suggests the possibility to quickly build a high-performance CD-

DNN-HMM system for a new language from an existing 

multilingual DNN. This huge benefit would require a small amount 

of  training data from the target language, although having more 

data would further improve the performance, can completely 

eliminate the unsupervised pre-training stage, and can train the 

DNN with much fewer epochs. Our work also indicates the 

possibility to build a universal ASR system efficiently under the 

CD-DNN-HMM framework. Such a system can not only recognize 

many languages and improve the accuracy for each individual 

language, but also expand the languages supported by simply 

stacking softmax layers for new languages.  

In our current study, we only used four European languages to 

build the multilingual DNN. We believe further performance 

improvement can be achieved by using additional and more 

diversified languages to cover a wider range of phonetic variations. 

In this study we showed that when 36+ hours of target language 

training data are available we can obtain additional gain by further 

adjusting the full DNN. We believe this is an indication that the 

model size of the multilingual DNN, which is the same as that of 

the monolingual DNN in our study, should be expanded to model 

the greater variability observed in multiple languages. We plan to 

investigate all these in our future work. 
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