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ABSTRACT 

 
Signal models where non-negative vector data are represented by a 

sparse linear combination of non-negative basis vectors have 

attracted much attention in problems including image classifi-

cation, document topic modeling, sound source segregation and 

robust speech recognition. In this paper, an iterative algorithm 

based on Newton updates to minimize the Kullback-Leibler 

divergence between data and model is proposed. It finds the sparse 

activation weights of the basis vectors more efficiently than the 

expectation-maximization (EM) algorithm. To avoid the computa-

tional burden of a matrix inversion, a diagonal approximation is 

made and therefore the algorithm is called diagonal Newton 

Algorithm (DNA). It is several times faster than EM, especially for 

undercomplete problems. But DNA also performs surprisingly well 

on overcomplete problems.  

 

Index Terms— sparse coding, non-negative matrix 

factorization, source separation, Newton method, Kullback Leibler 

divergence, vocabulary acquisition. 

 

1. INTRODUCTION 

 
Many proposed solutions to problems in speech, image or text 

processing model non-negative vector data by a sparse linear 

combination of non-negative basis vectors with non-negative 

activation weights. Examples in audio processing [1] include 

separating sound sources from single-channel mixtures [2][3], 

dereverberation [4], music transcription [5],  noise-robust speech 

recognition [6][7], vocabulary acquisition and recognition [8] up to 

bird phrase classification [9]. The non-negative basis vectors can 

be learned from data using non-negative matrix factorization 

(NMF) or they can be sampled from data (exemplars) or they can 

be constructed from insights about the data. Though this term is 

mostly used in conjunction with the exemplar approach, the set of 

non-negative basis vectors will be called the dictionary. Once the 

dictionary is chosen, the problem becomes to estimate the non-

negative weights or activations of the dictionary elements, a 

problem that will be referred to as non-negative sparse coding 

(NSC) in this paper. Especially in cases where the dimension of the 

dictionary elements is larger than the number of dictionary 

elements, the activations will tend to be sparse. To increase 

sparsity, a regularization term is added in the NSC problem. 

The linear combination will only approximate the data to be 

analyzed and hence a metric is required to quantify the quality of 

this approximation. In this paper, the Kullback-Leibler divergence 

(KLD) will be used for which the multiplicative update (or 

expectation-maximization, EM) rule of [10] applies. Algorithms 

for the more generic formulation of α,β-divergence can be found in 

[11].  

The EM update converges slowly and this is often a practical 

concern. The goal of this paper is to increase the convergence 

speed by using second order (Newton) updates. However, for 

multivariate problems like NSC, this typically results in a matrix 

inversion, which destructs the benefit of faster convergence. There 

is prior work on second order updates for the least squares cost 

function, e.g. [12][13][14], but none uses a diagonal approximation 

without line search. The method in [15] is also fit for the KLD but 

still involves QR-decomposition and Levenberg regularization for 

convergence. In this paper, a diagonal approximation not involving 

line search is made instead, making the update computationally 

attractive, even for high-dimensional problems. The resulting 

algorithm is named diagonal Newton algorithm (DNA). To the 

best of the author’s knowledge, this approach has never been 

explored before. 

Below, the NSC problem is first formulated in section 2 and 

the baseline EM solution is explained in section 3. DNA is then 

motivated in sections 4 and 5 and evaluated on practical speech 

processing problems section 6.  

 

2. NSC FORMULATION 

 
Let W ∈ N×R be the matrix containing R dictionary vectors, each 
of dimension N. In the present formulation, it is not assumed that 
the dictionary elements are normalized. In the absence of sparsity 
regularization, there is a computational benefit for normalizing the 
dictionary elements to unit ℓ1-norm. Let h ∈ R denote the weight 
vector with which a non-negative data vector v ∈ N is modeled as 
v ≈ W h. All parameters are assumed to be non-negative: wij≥0, 
hi≥0 and vi≥0. In this work, the similarity between v and z = W h is 
measured by the extended Kullback-Leibler divergence 
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� �
���� − 	 
�
�
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Though non-negativity already leads to sparse h, sparsity in h can 

be encouraged by regularizing d(v,z) by penalizing large weights: 

���v	v	v	v	,	WWWW	�� = ��v	v	v	v	,	WWWW	�� + 	 ��
�

ℎ� (1)

where λr ≥ 0 are the regularization parameters. NSC is then 

formulated as 

��				=	arg	min�"	 	���v	v	v	v	,	WWWW	�"� 

subject to h’ ≥ 0, which is a convex optimization problem with a 

unique solution. Consider the r-th component of the minimizer of 

(1). It should either be a stationary point, i.e. #���v	v	v	v	,	WWWW	��
#ℎ� = − 	 
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or it should be on the boundary of the non-negativity constraint, 

i.e. 

ℎ� = 0 

Notice that in the latter case R rd h∂ ∂ must be positive, for if it 

were not, the cost (1) could be reduced for some nonzero hr, which 

would contradict the assumption that the optimum is on the 

boundary. Hence the minimizer should satisfy for r = 1 … R 

	 
$ %$�ℎ��W	hW	hW	hW	h�$$
− ℎ� (	 %$�

$
+ ��) = 0 (2)

To simplify the expressions below, the N-dimensional column 

vector function q(h) is defined as: 

*$��� = 
$�W	hW	hW	hW	h�$ 
Hence, with 1111 denoting a vector of ones of appropriate length and 

superscript t denoting matrix transpose, (2) becomes: 

ℎ� �WWWW,qqqq���WWWW,1111�� + �� − ℎ� = 0 

Finally, define  

.���� = /WWWW,qqqq���0��WWWW,1111�� + �� − 1 (3)

so any solution must satisfy 

	.����	ℎ� = 0					for	r	=	1	…	R (4)

Summing (2) over r yields 

	��5,6�� + ���ℎ�
�

= 	 
$
$

 (5)

which is satisfied for any guess h by renormalizing: 

ℎ� ⇠ ℎ� vvvv,1111∑ ��5,6�9 + �9�ℎ99  (6)

For a normalized estimate of h, the cost function is expressed as 

���v	v	v	v	,	WWWW	�� = 	 
$ log *$
$

 (7)

 

  

3. EM UPDATES 

 
Equation (4) does not have an analytical solution for h, but adding 

hr to both sides, a fixed point update can be attempted: 

ℎ� ⇠ ℎ��1 + .�� = ℎ� �WWWW,qqqq���WWWW,1111�� + �� (8)

This update is recognized as multiplicative updates for the KLD 

metric [10] which has also been shown to be a form of the 

Expectation-Maximization (EM) algorithm [16], for which non-

increase of the convex cost function (1) is guaranteed at each 

update. When initializing the EM algorithm, one has to be careful 

to choose all hr ≠ 0 for the update has a zero locking property, i.e. it 

can never escape a point where any component is zero. Notice also 

that whatever h the EM-update is applied to, the updated estimate 

will automatically satisfy (5). 

Update (8) has two fixed points: hr = 0 and ar = 0. In the 

former case, ar must be negative, for ar is the negative of the 

derivative which was already proven to be positive in this case. 

EM updates often converge slowly and authors report requiring 

hundreds or even thousands of iterations to attain solution that 

have sufficiently converged for their application. Hence there is an 

interest in speeding up the convergence process. 

 

4. NEWTON UPDATES 
 

In Section 2 it was shown that all stationary points satisfy equation 

(4). Instead of solving it with the fixed point EM update (8), a  

Newton method is proposed. In general, let g(h) be an R-dimen-

sional vector function of an R-dimensional variable h. Newton’s 

update then states: 

� ⇠ � −	�∇<�=><��� (9)

with 

�∇<��? = ∂�����
∂ℎ?  (10)

Applied to equation (4): 

�∇<��? = .?A�? − ℎ��WWWW,1111�� + �� 	 
$%$�%$?�5��$B$
 (11)

where δrl is Kronecker’s delta.  

To avoid the matrix inversion in update (9), the last term in 

equation (11) is diagonalized, which is tantamount to solving the 

r-th equation in (4) for hr with all other components fixed. With 

C���� = 1�WWWW,1111�� + �� 	 
$ %$�B�W	hW	hW	hW	h�$B$
 (12)

which is always positive, an element-wise Newton update for h is 

obtained: 

ℎ� ⇠ ℎ� ℎ�C����
ℎ�C���� − .���� (13)

Notice that this update does not automatically satisfy (5), so 

updates should be followed by a renormalization (6). 

Like for the EM-update, hr = 0 and ar = 0 are the only fixed 

points of update (13), which are now shown to be locally stable. In 

case the optimizer is at hr = 0, we have shown before that ar is 

negative, and update (13) will indeed decrease hr. In a sufficiently 

small neighborhood of a point where the gradient vanishes, i.e. ar = 

0, update (13) will increase (decrease) hr if (8) increases 

(decreases) its estimate. Since if (8) is stable, update (13) must be 

too. 

However, this only guarantees local convergence for per-

element updates and Newton methods are known to suffer from 

potentially small convergence regions. This also applies to update 

(13), which can indeed result in limit cycles in some cases. In the 

next subsections, two measures are taken to respectively increase 

the convergence region and to make the update globally stable. 

 

4.1 Step size limitation 
 

When ar is positive, update (13) may not be well-behaved in the 

sense that its denominator can become negative or zero. Therefore, 

it is bounded below by a function with the same local behavior 

around zero:  ℎ�C����
ℎ�C���� − .���� = 1

1 − .����ℎ�C����
≥ 1 + .����

ℎ�C���� 

Hence, if ar ≥ 0, the following update is used: 

(14)

7300



ℎ� ⇠ ℎ� E1 + .����
ℎ�C����F = ℎ� + .����

C���� (15)

Both the multiplicative and additive form of this update can be 

used, since if hr would converge to zero, ar has to be negative and 

the update does not apply. 

Finally, step sizes are further limited by flooring resp. ceiling 

the multiplicative gain applied to hr in update (13) and (15) to ε = 1 

resp. α > 1. 

 

4.2 Non-increase of the cost 
  

Despite the measures taken in section 4.1, the divergence can still 

increase under the Newton update, though this is the exception 

rather than the rule. A very safe option is to compute the EM 

update additionally and compare the cost function value for both 

updates. If the EM update would be better, the Newton update is 

rejected and the EM update is taken instead. This will guarantee 

non-increase of the cost function. 

 

5. DIAGONAL NEWTON ALGORITHM 
 

With the elements explained and motivated above, the Diagonal 

Newton Algorithm (DNA) can now be proposed. 

 

5.1 Algorithm 
 

The details of the proposed algorithm are listed in Table 1. For 

comparison, the EM update requires only steps 1 through 4 to be 

performed, since its non-increase property does not require 

checking the cost. In practice, checking this condition for DNA is 

only required for the first few iterations. After M successive 

successes for the DNA algorithm, steps 4, 9 and 10 can be 

removed leading to computational gains. 

In step 8, update (13) is used if ar < 0 and (15) elsewhere. 

 

 
input: W, v, λλλλ and an initial guess for h 

precompute Wt1+λλλλ, vt1  and W����W 

set m = 0 

repeat for a fixed number of iterations: 

step Compute Eq. Operations 

1 Wh  O(NR) 

2 q = v∅(Wh)  O(N) 

3 A (3) O(NR)+O(R) 

4 if m < M compute hEM (8) O(R) 

5 (Wh)2  O(N) 

6 v∅(Wh)2  O(N) 

7 B (12) O(NR)+O(R) 

8 hDNA (13)(15) O(2R) 

9 Normalize (6) O(2R) 

9 if m < M compute cost for hEM (7) O( (K+1) N) 

10 if m < M compute cost for hDNA (7) O( (K+1) N) 

11 accept solution with lowest cost. If that is hDNA, 

increment m, else set m = 0. 

 

Table 1: Processing steps for EM (step 1-4) and DNA with their 
complexity. The symbols ���� and ∅ denote element-wise multi-
plication and division respectively. K is the CPU cost for evalua-
tion of a logarithm expressed in elementary operations. 

 

5.2 Computational complexity 

 
The complexity of each step is listed in Table 1. Here, a 

multiplication, an addition and a multiply/accumulate are all 

counted as one elementary operation. The evaluation of a 

logarithm costs K elementary operations. For the CPU used in the 

experimental section, K was measured to be close to 1. On other 

CPUs, a value of about 5 was found.   

The complexity of EM is O(2NR+N+2R) for each iteration. For 

DNA, this becomes O(3NR+(2K+1)N+7R) when m < M, and 

O(3NR+3N+7R) afterwards. Theoretically, once m ≥ M, DNA will 

be more efficient than EM if the number of iterations can be 

reduced by a one third (assuming the terms in NR dominate). 

 

5.3 Approximation 
 

A reduction in the number of iterations will only be observed if the 

diagonal approximation of equation (11) holds, which expresses 

that the basis vectors (columns of W) should be orthogonal when 

weighted with vi/(Wh)i
2. Given the non-negativity of W, a 

diagonal structure is achieved when the rows of W contain a single 

dominant value, especially when the corresponding entry in the 

data v is large. This condition is more easily satisfied when W is 

obtained from an NMF (and hence N > R), i.e. when the W 

columns are the R corner points of a convex hull constructed to 

span the training as closely as possible. Hence, for these 

undercomplete problems, a good performance is expected. 

However, for NSC problems where the columns of W are 

obtained from potentially similar samples as will be the case in 

section 6.2,, orthogonality is questionable and is therefore included 

in the experimental verification.  

 

6. EXPERIMENTS 
 

In this section the DNA is tested on several data sets. M is set to 5, 

ε = 0.01 and α = 5, irrespective of the matrix dimensions. Both EM 

and DNA are initialized from Wtv. Timing measurements are 

obtained on a quad-core AMDTM Opteron 8356 processor and all 

code is written in MATLABTM using matrix/vector operation 

where possible.  Software is publically available from 

http://www.esat.kuleuven.be/psi/spraak/downloads. 

 

6.1 Vocabulary acquisition data 
 

The first test case is one with a very “skinny” W, i.e. it has 

dimensions N = 165000 and R = 12 and occurs in a task of 

vocabulary acquisition and subsequent recognition [8]. W is 

learned with NMF from training data. The data v are obtained by 

counting the number of times discrete events occur in an utterance. 

The physical meaning of the basis columns in W is the occurrence 

probability of the discrete events in each of the R words the 

utterances are composed of. The sparsity parameter λr = 0 for all r. 

To examine the convergence, we perform a reference 

experiment where the EM update is run for 20000 iterations. 

Figure 1 then shows the absolute difference between these 

reference activation weights and the solutions found by both 

algorithms at each iteration, obviously showing superiority of 

DNA. This metric is preferred over the divergence, since it 

converges to zero. Moreover, in all evaluation cases, the 

divergence for DNA is always lower than for EM for an equal 

number of iterations.  
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Figure 1: convergence of EM and DNA on the word acquisition 
data set with a W of size 165000 × 12. 

6.2 Exemplar matching on spectra 
 

The NSC problem in this task arises from matching sparse linear 

combinations of exemplars of root-compressed MEL-scale spectro-

grams of subword units (half digits in this case) to new data [17]. 

Exemplars of equal length and subword class are grouped in a 

dictionary which, depending on the exemplar length and the 

number of exemplars, can turn out to be undercomplete or over-

complete. Since all columns of W are alike, orthogonality is a 

questionable assumption. DNA and EM were compared on various 

problems of which the ones with largest NR ranged from 119 × 248 

to 493 × 104. Each of the problems is solved for 100 data vectors 

using the sparsity regularization that emerges in [17].  

Figure 2 shows the sum of the weight vector absolute errors 

over the 100 different data vectors along the utterance to be 

decoded for the 493 × 104 task. In 15 iterations, DNA reaches the 

same error as EM in 200 iterations. It is then 5.5 times faster. On 

the overcomplete 119 × 248 task (Figure 3), EM is particularly 

slow. DNA needs 45 iterations to achieve the same activation error 

as EM achieves in 1000 iterations and is 13 times faster on the 

hardware mentioned above. 

 

Figure 2: convergence of EM and DNA on the exemplar matching 
data set with a W of size 493 × 104. 

 

Figure 3: convergence of EM and DNA on the exemplar matching 
data set for an overcomplete 119 × 248 task. 

 

Figure 4: convergence of EM and DNA on a large overcomplete 
task of 690 × 14023 

  

6.3 Robust speech recognition data 
 

The largest case considered arises from sparse representations for 

feature enhancement in the context of speech recognition [6]. 7000 

exemplars of Mel-scaled spectrograms with 23 channels of fixed 

length of 30 frames are extracted from speech and 7000 from noise 

data. Additionally, 23 single-channel stationary noise exemplars 

are added, yielding a W of size 690 × 14023. All dictionary 

elements are ℓ2-normalized and all have the same sparsity 

regularization constant as dictated by the application. In this test, 

the activation weights for 315 test spectrograms extracted from 

noisy data are computed. Due to the large matrix size, convergence 

is slower and M is set equal to the number of iterations. For the 

same reason, it is expensive to compute a reference solution and 

therefore divergence is reported in Figure 4. To achieve the same 

divergence, DNA needs less than a quarter of the number of 

iterations required by EM and is about twice faster in practice. 

 

7. CONCLUSIONS 
 

Models based on sparse non-negative representations have shown 
excellent performance in many problems in speech, image and text 
processing. In many cases, the computational cost of these methods 
is a practical hurdle. The DNA algorithm can offer a solution to 
speed up the computation of activation weights in these NSC 
problems. Thanks to the diagonal approximation, matrix inversion 
is avoided resulting in an algorithm that is simple to implement and 
that scales well to large matrix sizes. To guarantee the non-increase 
of the cost function, a combination with the EM update is 
proposed. The computational cost of an iteration of DNA is larger 
than for EM, but this cost is won back by the increased 
convergence speed. Especially for skinny NMF problems (R = N) 
for which the diagonal approximation is expected to hold well, the 
convergence is much faster than for the EM algorithm. It is exactly 
in these undercomplete NSC problems that the main application of 
DNA is situated.  But even for large overcomplete problems found 
in exemplar-based modeling computational gains are observed.  

DNA has been found to be more efficient than EM on the 

speech processing problems studied in this paper. In future work, 

this evaluation will be extended with additional test cases 

originating from practical problems. DNA also offers potential in 

NMF problems where updates of activations and bases alternate. 
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