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ABSTRACT

In recent years, data from various auxiliary acoustic and non-
acoustic sensors have been used for enhancing noisy speech.
These include bone-conduction microphones, surface elec-
tromyographic sensors, ultrasonic imaging of facial move-
ments, etc. The signal from such sensors is correlated with the
speech signal to varying degrees, and unlike microphone data,
is typically not affected by acoustic background noise, mak-
ing its use attractive for speech enhancement. In this paper,
we discuss the measurement of the utility of such data from
an information-theoretic perspective, and quantify the infor-
mation that is shared between clean speech and the auxiliary
signal, which is not present in the observed noisy speech sig-
nal. The measure is applied to simultaneously recorded air-
and bone-conducted speech data.

Index Terms— Speech enhancement, mutual informa-
tion, bone conduction.

1. INTRODUCTION

Speech enhancement based on conventional single and multi-
microphone techniques fails to deliver a sufficient amount
of noise reduction under several realistic conditions, e.g.,
in reverberant environments, and under high levels of non-
stationary background noise. The use of novel sensing modal-
ities other than microphones to aid in the capture of speech in
such adverse conditions has grown in recent years. Exam-
ples include surface electromyographic sensors that capture
facial movements [1], ultrasonic sensors to capture tongue or
lip movements [2, 3], non-audible murmur microphones to
capture body-conducted sound [4], and bone-conduction mi-
crophones [5]. As these sensors capture some form of body
movement related to speech production, their data is corre-
lated to the clean speech signal, and more importantly, they
are typically free from background noise. Another applica-
tion where some of these sensors find use is the so-called
silent speech interface, which enables speech communication
even in the absence of any audible signal, e.g., for privacy or
security, or due to disability.

The benefit provided by auxiliary sensors is generally
evaluated in relation to the application in which they are em-

ployed, e.g., in terms of the improvement in the signal-to-
noise ratio (SNR) when used for speech communication in
noisy environments [5], or in terms of the recognition accu-
racy when applied to speech recognition systems [3, 6]. It is
also of interest, however, to focus on how much information
is intrinsically shared between the clean speech signal and the
auxiliary sensor data, independent of the particular manner or
application in which it is being used, e.g., to compare multi-
ple auxiliary sensors. In this paper, we propose to use a more
general information-theoretic measure to achieve this goal.

In prior work, mutual information (MI) has been used as a
measure to study the relation between different sets of speech
data. In [7, 8], the MI between the low and high band fre-
quencies of speech was studied, e.g., to provide upper bounds
on the performance of artificial bandwidth extension schemes
operating without side-information. In [9], the estimated MI
between clean and enhanced speech was used as a measure of
speech intelligibility.

In contrast to these methods that measure the information
shared between two signals, we are interested in quantifying
the information shared between two signals that is not present
in a third signal. For example, knowing how much informa-
tion is shared between clean speech and the auxiliary sensor
data, which is not present in the observed noisy data allows
us to quantify the utility of the auxiliary sensor. We define
two measures based on conditional MI, one that captures the
utility of the auxiliary sensor alone, and another that captures
the total system utility. We use these measures to analyze the
utility of bone-conducted (BC) speech in the enhancement of
noisy speech at different SNRs and for different locations of
the BC sensor.

2. MEASURING AUXILIARY DATA UTILITY

Let X be a continuous random variable with probability den-
sity function (pdf) p(x). The differential entropy of X is de-
fined as [10, ch. 9]

h(X) = −

∫

p(x) log p(x)dx. (1)
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The MI between two random variables X and Y with joint
pdf p(x, y) is given by

I(X,Y ) =

∫

p(x, y) log
p(x, y)

p(x)p(y)
dx dy

= h(X) + h(Y )− h(X,Y ). (2)

I(X,Y ) quantifies the amount of information obtained about
X when Y is observed, or vice-versa. I(X,Y ) ≥ 0 with
equality when X and Y are uncorrelated. Given a third ran-
dom variable Z (e.g., BC speech), we wish to determine the
amount of information shared between X (e.g., clean speech)
and Z, that is not present in Y (e.g., noisy speech). This
would enable us to quantify the utility of Z in the estimation
of X given a noisy observation Y . We denote this quantity
as UX(Z|Y ) and it is given by the conditional MI between X
and Z given Y

UX(Z|Y ) ≡ I(X,Z|Y )

= h(X,Y ) + h(Z, Y )− h(Y )− h(X,Y, Z).
(3)

It is readily seen that UX(Z|Y ) is non-negative. UX(Z|Y )
can be interpreted as the additional information that Z con-
tains about X , which is not available in Y . In a total system,
both Z and Y will be employed to estimate X , which moti-
vates the definition of a total utility measure for the estimation
of X as

UX(Z, Y ) ≡ I(X,Z|Y ) + I(X,Y )

= UX(Z|Y ) + I(X,Y ), (4)

which quantifies the total unique information that Z and Y
contain about X . Using (2) and (3), (4) can be rewritten as

UX(Z, Y ) = h(X)− h(X|Y,Z), (5)

i.e., the total system utility UX(Z, Y ) is the reduction in the
uncertainty about X when Y and Z are observed. We con-
sider a simple illustrative example to study the sensor and to-
tal system utility in our context. Let

X = (X1, X2), Xi ∼ N (0, σ2

xi
), i = 1, 2,

W = (W1,W2), Wi ∼ N (0, σ2

wi
), i = 1, 2,

Y = X+W, and

Z = X1 +Wz, Wz ∼ N (0, σ2

wz
). (6)

We assume X1, X2,W1,W2, and Wz to be mutually indepen-
dent and that σ2

wz
� mini=1,2 σ

2

wi
. In this example, Y is a

noisy observation of X, and Z contains partial information
about X, and in particular, more information about X1 than
Y but contains no information about X2. For large values of
σ2

wi
, Z can contain more information about X than is present

in Y as σ2

wz
� σ2

wi
. The role of Z in this example is similar

to that of BC speech, which is free from acoustic background

noise, but only contains a partial description of the clean AC
speech.

The vector (X,Y, Z) is jointly Gaussian with zero mean
and covariance matrix given by

ΣXYZ =





ΣX ΣX ΣXZ

ΣX ΣY ΣXZ

ΣT
XZ ΣT

XZ ΣZ



 , (7)

where

ΣX =

(

σ2

x1
0

0 σ2

x2

)

,

ΣY =

(

σ2

x1
+ σ2

w1
0

0 σ2

x2
+ σ2

w2

)

,

ΣXZ = (σ2

x1
+ σ2

wz
, 0)T , and

ΣZ = σ2

x1
+ σ2

wz
. (8)

The differential entropy of a d-dimensional Gaussian random
variable with zero mean and covariance Σ is given by [10, ch.
9]

h(X) =
1

2
log(2πe)d|Σ|. (9)

Using (2), (3), and (9), we have

I(X, Z) =
1

2
log

|ΣXΣZ |

|ΣXZ |
,

I(X,Y) =
1

2
log

|ΣXΣY|

|ΣXY|
, and

I(X, Z|Y) =
1

2
log

|ΣXYΣYZ |

|ΣYΣXYZ |
, (10)

where

ΣYZ =





ΣY σ2

x1

0
σ2

x1
0 σ2

x1
+ σ2

wz



 , and

ΣXY =

(

ΣX ΣX

ΣX ΣY

)

, (11)

from which UX(Z|Y) and UX(Z,Y) can be obtained.
Consider the following parameter settings: σ2

x = σ2

x1
=

σ2

x2
= 1 and σ2

wz
= 10−3. Let σ2

w = σ2

w1
= σ2

w2
. Fig-

ure 1 plots I(X, Z), I(X,Y), UX(Z|Y) and UX(Z,Y) for
different values of σ2

w. When the SNR is poor, e.g., for
10 log

10
σ2

x/σ
2

w = −20 dB, X and Z share around 3.5 nats of
information (dotted line), none of which is present in Y as it
is dominated by noise. For low SNR values, Z therefore has
a high utility, and the sensor utility UX(Z|Y) (dashed curve)
coincides with the total system utility UX(Z,Y) (dash-dot
curve). The utility of Z decreases with increasing SNR and
approaches zero as Y provides a better description of X than
Z, and the total system utility coincides with I(X,Y). For
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Fig. 1. I(X,Y) (solid), I(X, Z) (dotted), UX(Z|Y)
(dashed), and UX(Z,Y) (dashed), in nats, for different SNRs.

a range of SNRs between approx. −10 dB and 30 dB in this
example, both Z and Y contribute to the estimation of X.

For speech enhancement using multi-modal sensors,
UX(Z|Y) can be used to evaluate the utility of the signal
provided by each sensor, in relation to the noisy signal. In
the next section, we consider simultaneously captured air-
conducted (AC) and BC data, and compute the utility of BC
data for two sensor locations.

3. UTILITY OF BONE-CONDUCTED DATA

3.1. Measurement Setup

Recordings were made in a dry room with a reverberation
time of approximately 250 ms. A male and a female par-
ticipant each wore BC sensors like the one shown in Fig.
2(b) positioned in the neck and temple regions shown in Fig.
2(a). A microphone placed 10 cm in front of the user’s mouth
captured the clean AC speech signal. Each participant was
asked to utter sentences from the Harvard speech database
[11] which were sequentially presented on a computer mon-
itor for a duration of 6 min. The recorded signals were then
downsampled to 8 kHz for further processing. To simulate
noisy AC speech, white Gaussian noise with varying power
was added to the recorded clean AC speech signal, producing
an AC signal set with SNRs ranging from −40 to 40 dB in
increments of 5 dB.

The sensor and total system utility measures for each po-
sition of the BC sensor over the simulated SNR range were
estimated using the approach for conditional MI estimation
in [12], which is based on the k-nearest neighbor (KNN) al-
gorithm. This algorithm estimates the likelihood of a given
sample based on the volume that encloses the k closest neigh-
bors in the sample space. Here, the sample space consists of

12-dimensional Mel-Frequency Cepstral Coefficient (MFCC)
feature vectors which are computed for overlapping segments
of the 8-kHz AC and BC signals. The segment-length is 256
samples with an overlap of 50% and the value of k is set to the
square-root of the resulting number of feature vectors, which
corresponds to k = 150 in this case.

(a) Test location (b) Test prototype

Fig. 2. (a) Two locations considered in this paper: 1. Left side
of neck on same transverse plane with the larynx and same
frontal plane with shoulder; 2. Right squama of the temporal
bone; (b) Prototype used during experiments.

3.2. Utility evaluation

Figure 3 plots the sensor and total system utility measures,
UX(Z|Y) and UX(Z,Y), of the BC sensor placed in the neck
position, averaged over the male and female speakers, where
the variables X,Y, and Z correspond to clean AC, noisy AC
and BC speech, respectively. For reference, the average val-
ues of I(X,Z) and I(X,Y) are also included. The curves
show a similar behavior to those in Fig. 1. The MI I(X,Z)
curve serves as an upper bound to the maximum shared in-
formation between the BC and clean AC speech signal under
ideal conditions when there is no noise leakage in the BC sen-
sor. It also serves as a lower bound of the total system utility
for low SNRs where noise dominates. Unlike I(X,Z), the
value of I(X,Y) depends on the SNR, and can provide a
quantitative measure of the amount of new information avail-
able as the SNR increases. For example, between −10 and 10
dB, 5 dB in SNR improvement translates to 0.25 more nats of
information.

Examining the intersection points between the various
curves in Fig. 3 also provides useful insights into the behavior
of the system. For example, at an SNR of 1.8 dB where the
I(X,Y) and UX(Z|Y) curves intersect, the amount of infor-
mation about the clean AC signal provided by the noisy AC
signal equals that provided by the BC sensor signal. The point
at which the I(X,Y) and I(X,Z) curves intersect indicates
the SNR at which the amount of information provided by the
noisy AC speech signal equals that provided by the BC sen-
sor alone. For the neck region this corresponds to an SNR of
almost 12 dB. Care has to be taken, however, with how this is
interpreted since information quantity is being compared and
not quality.
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As the SNR improves, the utility of the BC sensor de-
creases as would be expected since the information it provides
about the clean AC signal increasingly overlaps with that of
the observed noisy AC speech signal. The total system util-
ity UX(Z,Y) begins lower-bounded by UX(Z|Y) and starts
increasing as the SNR improves since the amount of informa-
tion about X provided by Y also increases. Eventually as the
SNR improves further, the curves for I(X,Y) and UX(Z,Y)
join when the utility of the BC sensor approaches zero.
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Fig. 3. I(X,Y) (solid), I(X, Z) (dotted), UX(Z|Y)
(dashed), and UX(Z,Y) (dashed), in nats, for different SNRs.

To appreciate the utility measure as a tool for evaluat-
ing sensor placement, Fig. 4 compares the utility of bone-
conducted speech captured at the neck and temple regions.
The plot shows that the utility of the temple BC sensor is
higher than that of the neck-positioned sensor. This is related
to the fact that BC signals captured at the temple contain more
information about the vocal tract shape. In contrast, a BC sen-
sor placed at the neck primarily captures the vocal cord vibra-
tions and weaker reflections from the vocal tract and hence
contains less information about the clean AC speech signal
[13].

4. CONCLUSION

This paper has presented an information-theoretic utility mea-
sure for auxiliary sensors in the context of speech capture in
the presence of noise. This measure quantifies the amount
of information provided by an auxiliary sensor about a clean
speech signal which is missing from its noise-corrupted ver-
sion. Experiments were performed using bone-conducted
speech at two positions on the user’s body and for different
signal-to-noise ratios to highlight the benefits of the measure.
It was observed that bone-conducted speech captured at the
temple region had a slightly higher utility than that captured
at the neck position. Future applications include the evalua-
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Fig. 4. UX(Z|Y) in nats, for neck (dashed), and temple
(solid) regions.

tion of different sensors and their placement in multi-modal
systems for different speech enhancement applications.
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