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ABSTRACT
The real-time implementation of the existing multi-channel
Wiener filter (MWF) algorithms suffer from performance
degradation due to the lack of robustness against estimation
errors of the second-order statistics. The reasons are twofold:
one, the estimation of the statistics relies on real voice activity
detector (VAD), which often fails in adverse environments.
Second, the MWF solutions involve estimation of the second
order clean speech statistics, which also exaggerates the er-
rors. This paper presents an MWF algorithm that requires
neither VAD nor clean speech statistics. Performance eval-
uation under real scenarios shows that the proposed method
outperforms the conventional MWF solution in terms of the
trade-off between noise reduction and speech distortion.

Index Terms— Multi-channel Wiener filter, speech en-
hancement, single-channel noise reduction

1. INTRODUCTION

Research in speech enhancement has been active for many
years due to its diverse applications ranging from telecom-
munication devices to assistive listening devices. Among the
multi-channel techniques reported in the literature, speech
distortion weighted multi-channel Wiener filter (SDW-MWF)
[1, 2] is promising as it does not require prior knowledge
about the location of the desired speech signal and the micro-
phone characteristics. As a result, it is more robust against
microphone mismatch when compared to the well-known
beamformer, the generalized sidelobe canceller (GSC) [3].
Similar to the GSC, SDW-MWF relies on a voice activity
detection (VAD) algorithm to update the noise statistics in
noise-only segments, and the signal statistics during voiced
segments. As a VAD estimate is required in practice, wrong
estimation often occurs under non-stationary and highly noisy
environments, which leads to greater second order estimation
errors and causes performance degradation in the SDW-MWF
method [4, 5].

Alternatively, the SDW-MWF solution can be decom-
posed into a rank-one problem, namely the R1-MWF method
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that consists of a spatial filter and a single-channel postfil-
ter [6, 7]. Although R1-MWF is more robust against the
estimation errors, the single-channel postfilter may not be
optimal in terms of spectral tracking, since it is based on
correlation matrices that are adapted slowly over time. This
has been improved by using a multi-channel speech presence
probability (MC-SPP) algorithm to adapt the noise statistics
continuously over time [8]. Instead of using MC-SPP, a more
direct SPP estimate can be obtained by taking one of the mi-
crophone inputs as reference, which has been used in [9] to
adapt the parameter that trades off noise reduction and speech
distortion. To increase the accuracy in speech detection,
both MC-SPP and SPP require accurate estimates of a priori
speech absence probability (SAP) and a priori signal-to-noise
ratio (SNR), which in turn increase the processing delay. To
avoid this, fixed prior estimates can be used not only to reduce
the delay but also to maintain the accuracy in noise tracking
in single-channel speech enhancement framework [10, 11].

This paper proposes a non-VAD based SDW-MWF solu-
tion that aims to reduce the second order statistics errors by
avoiding the subtraction of noise-only correlation matrix from
the speech-plus-noise correlation matrix. In that case, the de-
sired signal is estimated from the reference microphone by
using a single-channel speech enhancement framework from
[12], which shows good performance in terms of trade-off be-
tween noise reduction, speech distortion and musical noise.
In addition, the noise power spectral density (PSD) estimate
in the reference channel is obtained by the modified SPP with
fixed priors approach in [11], which is then employed to con-
tinuously update both noisy and noise second order statistics.

The paper is organized as follows. Section 2 shows the
conventional MWF solutions. Section 3 develops the pro-
posed methods. Section 4 presents the results and Section
5 concludes the paper. Section 6 shows the relation between
the contribution in this paper and prior works in the field.

2. MULTI-CHANNEL WIENER FILTER

2.1. Signal model and notation

Let Yl (k,m), l = 1, ..., L, denote the microphone signals in
time-frequency domain, where k is the frequency bin index,
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m is the frame index and L is the number of microphones.
The received signals are given by

Yl (k,m) = Xl (k,m) + Vl (k,m) (1)

where Xl (k,m) and Vl (k,m) are the short-time Fourier
transform (STFT) representations of the target signal and the
uncorrelated noise components, respectively, of the lth micro-
phone. Here, speech enhancement is performed to remove
the unwanted noise while preserving the target speech signal.
This can be done by applying a set of filter w(k,m) to the
observed signal, such that

Z (k,m) = wH (k,m)y (k,m) (2)

where Z is the output signal, and y (k,m) ∈ CL×1 is a
stacked vector given as

y (k,m) = [Y1 (k,m) Y2 (k,m) , ..., YL (k,m)]
T

= x (k,m) + v (k,m)
(3)

with T indicating the transpose operator. From now on, both
indices (k,m) will be omitted for notational convenience.
The correlation matrices for the noisy speech Ry , the clean
speech Rx, and the background noise Rv are then defined,
respectively, as

Ry = E
{
yyH

}
, Rx = E

{
xxH

}
, Rv = E

{
vvH

}
,
(4)

where E and H denote, respectively, the expected value and
Hermitian transpose operators.

2.2. Formulation of multi-channel Wiener filter

The multi-channel Wiener filter (MWF) optimally estimates
the speech signal, based on an MMSE criterion, as

wMWF = arg min
w

E
{∣∣Xref −wHy

∣∣2} (5)

where the desired signal in this case is the unknown speech
component Xref from the reference microphone. The draw-
back is that some residual noise will still remain in the output
signal, Z, which can be reduced by allowing a trade-off be-
tween noise reduction and speech distortion. This can be done
by modifying the design criterion of the MWF as [1, 6]

wMWFµ = arg min
w

E
{∣∣Xref −wHx

∣∣2}+ µE
{∣∣wHv

∣∣2}
(6)

where speech and noise are assumed to be uncorrelated, and
µ is the trade-off parameter. A larger µ value here indicates
more residual noise reduction at the expense of higher speech
distortion. The solution of MWFµ can then be obtained as

wMWFµ = [Rx + µRv]
−1

Rxeref (7)

where eref = [0...0 1 0...0]
T is a L-element zero vector with

the unity corresponds to the rth element of the microphones.

Here, the correlation matrices Ry and Rv can be recursively
updated by using a VAD, as

H0 :

{
R̂v [m] = (1− αv) R̂v [m− 1] + αvy [m]yH [m]

R̂y [m] = R̂y [m− 1]

H1 :

{
R̂y [m] = (1− αy) R̂y [m− 1] + αyy [m]yH [m]

R̂v [m] = R̂v [m− 1]

(8)
whereH0 andH1 denote speech absence and speech presence
in the kth frequency bin of the mth frame, respectively. Both
smoothing factors αy and αv have to be chosen carefully to
reflect the degree of stationarity of speech and noise signals.

From Eq. (7), it can be observed that an estimation of Rx

is required, which is usually obtained by Ry −Rv [1]. How-
ever, estimation errors in both the complex-valued correlation
matrices Ry and Rv can result in a very poor estimate of Rx.
Although this can be avoided by obtaining a pre-determined
Rx estimate either with a calibration sequence [13], or by de-
riving a mathematical model [14, 15], these methods rely on
the a priori information, which makes them less attractive for
on-line applications.

3. PROPOSED METHOD

3.1. Formulation of MWFλ and estimation of noisy and
noise correlation matrices

In order to avoid the aforementioned problems, a bi-criteria
optimization problem for MWF is proposed, which consists
of a criterion to minimize the error in Eq. (5) and another
criterion to minimize the noise power. One way to formulate
such problem is to use the weighted sum between the two
criteria as given by

wMWFλ = arg min
w

(1− λ)E
{∣∣Xref −wHy

∣∣2}+

λ
(
E
{∣∣wHv

∣∣2})
(9)

where λ is a weighting value between 0 and 1. The solution
of the problem can then be found as

wMWFλ = [(1− λ)Ry + λRv]
−1

(1− λ) ryx (10)

where ryx = E {yX∗
ref}. It can be seen that by formulating

the problem in this way, the estimation of the clean speech
correlation matrix Rx can be averted. Also, a set of pareto
solutions can be found by varying λ, but this is not in the
scope of this paper.

Apart from that, instead of using a VAD to estimate
the correlation matrices, the frame and frequency dependant
modified SPP, p from [11] is employed, which allows both
R̂v and R̂y from Eq. (8) to be updated as

R̂v [m] = (1− α̃v [m]) R̂v [m− 1] + α̃v [m]y [m]yH [m]
(11)
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R̂y [m] = (1− α̃y [m]) R̂y [m− 1] + α̃y [m]y [m]yH [m]
(12)

where α̃v and α̃y are given respectively by α̃v = αv (1− p)
and α̃y = αyp, with αv and αy denote, respectively, the fixed
smoothing factor for noise and noisy correlation matrices.

3.2. Employing single-channel algorithm

From Eq. (10), it can be seen that the proposed solution re-
quires an estimate of the clean speech reference Xref. As op-
posed to previous methods [13, 14, 15], we propose to esti-
mate Xref by utilizing a single-channel speech enhancement
method and to use one microphone in the array as a reference.
As such, the estimate of ryx can be defined as

r̂yx = yG(X∗
ref + V ∗

r ) (13)

where Xref = HrefS with Href denotes the acoustic transfer
function of the target speech signal, S at the reference chan-
nel. Here, G is a spectral weighting gain function, which in-
volves the computation of the a posteriori and a priori SNR
estimates. In contrast to Rxeref = (Ry − Rv)eref from Eq.
(7), which takes the reference vector directly from the second
order clean speech estimate, Eq. (13) uses an SNR based gain
function to adapt the noisy stacked vectors to the desired clean
speech signal. Such implementation is capable of generating
a better clean speech estimate and improving the speech qual-
ity of the enhanced signal.

In this paper, G in Eq. (13) is taken from the modified
sigmoid (MSIG) gain function from [12]. As the beamformer
tries to adapt to the clean speech reference, an important as-
pect of the single-channel estimate is that the speech distor-
tion has to be as small as possible. This can be done by setting
smaller values for the SNR smoothing parameters from [12],
i.e. β ≈ 0.9 and αy ≈ 0, such that the amount of speech
distortion can be kept as low as possible while not having a
large amount of musical noise. Apart from that, further re-
duction of musical noise is proposed by having r̂yx updated
recursively as

r̂yx(m) = (1− αx)r̂yx(m− 1) + αxy (m) X̂∗
ref (m) (14)

where αx is the smoothing factor for target speech signal, and
X̂ref = G(Xref +Vr) indicates the clean speech estimate from
the reference microphone.

The SNR estimates for G require the estimation of the
noise PSD at the reference channel. Here, the noise PSD es-
timate in [11] is used, which involves the calculation of the
modified SPP. This implies that the same SPP estimate can
be used for estimating the noise PSD in the reference channel
and also the correlation matrices in Eqs. (11) and (12).

4. PERFORMANCE EVALUATION

Measurements are performed with 2 microphones (with inter-
element space of 1 cm) embedded in the left side of a pair of

earmuffs on a manikin so that the head-shadowing effect is
included. The manikin is placed close to the center of a room
with dimensions 3.05m × 3.05m, with a reverberation time
T60 of approximately 0.2 s. The loudspeakers are positioned
at 1m from the center of the head, with the speech located at
0◦ and the non-stationary factory noise rendered at 45◦, 90◦,
135◦, 180◦, 225◦, 270◦ and 315◦ to the left of the head. The
speech signals consists of 5 (2 male and 3 female) sentences
with length ranging from 11 s to 22 s. The signals are sampled
at fs = 16 kHz. An STFT length of K = 512 is used with a
frame rate R = 256 and square-root Hann windowing.

Evaluation includes wMWFµ from Eq. (6) with µ = 5, the
output signal from reference microphone using MSIG func-
tion with a noise floor of −15 dB , wMWFλ1 from Eq. (10)
with λ ≈ (µ− 1) /µ = 0.8 and wMWFλ2 with λ = 1 − p.
The smoothing constants are estimated by α = exp(−2.2R

tfs
),

with tx = ty = 0.02 s and tv = 2 s. The performance is mea-
sured by the speech intelligibility weighted segmental SNR in
frequency domain (IFWSNRseg) [16, 17]

IFWSNRseg =
10

M

M−1∑
m=0

∑K−1
k=0 Bk log10

A2(k,m)

A2(k,m)−Â2(k,m)∑K−1
k=0 Bk

(15)
where Bk is the ANSI SII weight placed on the kth frequency
bin [18], K is the number of bands, M is the number of
frames, A(k,m) and Â(k,m) are spectrum amplitudes of the
clean speech signal and enhanced speech signal, respectively.
Each frame is threshold by a−10 dB lower bound and a 35 dB
upper bound to discard non-speech frames.

In addition, noise attenuation (NATTseg) and speech
preservation (SPREseg) measures are utilized to study if a
difference in IFWSNRseg is due to more noise reduction or
less speech distortion. Both are given, respectively, by [19]

NATTseg =
1

M

M−1∑
m=0

10 log10
||vt(m)||2

||G(m)vt(m)||2
(16)

SPREseg =
1

M

M−1∑
m=0

10 log10
||xt(m)||2

||xt(m)−G(m)xt(m)||2
(17)

where vt(m) and xt(m) are mth frame time-domain vectors
for the noise and the clean speech signal, respectively. The
filtering matrix G indicates that both the noise and the clean
signals are processed with the same corresponding filters as
used to enhance the noisy signal. Apart from that, the widely-
used perceptual evaluation of speech quality (PESQ) measure
has also been included for performance comparison [17].

Figs. 1-4 show the average results for SNRs of −5 dB,
0 dB, 5 dB, and 10 dB, respectively. It can be observed that
wMWFλ1 outperforms wMWFµ for all objective measures
in all scenarios, indicating that the proposed method allows
more noise suppression, which does not come with higher
speech distortion. When wMWFλ1 is compared to MSIG and
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Fig. 1. Average results for input SNR −5 dB
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Fig. 2. Average results for input SNR 0 dB

wMWFλ2 , it generally has larger noise reduction but larger
speech distortion as well. This is the reason why wMWFλ1

performs better at low input SNR conditions but having
performance drop when the input SNR increases, relatively
to other evaluated methods, as shown in IFWSNRseg and
PESQ results. While wMWFλ2 improves the performance of
wMWFλ1 in terms of less speech distortion, more musical
noise is audible since the NATTseg values are much lower
than wMWFλ1 . When compared to MSIG from the refer-
ence microphone, wMWFλ2 has higher noise reduction but
also larger speech distortion. However, since MWF involves
temporal averaging in the second order statistics estimation,
musical noise can be reduced, especially at low SNR condi-
tions, as indicated by IFWSNRseg results from Fig. 1.

5. CONCLUSIONS

In this paper, the proposed formulation of SDW-MWF has
avoided the estimation of second-order clean speech statistics
by incorporating a single-channel speech enhancement frame-
work in estimating the desired signal from a reference micro-
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Fig. 4. Average results for input SNR 10 dB

phone. Experimental results show that the proposed method
outperforms the traditional method for all performance mea-
sures. By incorporating SPP in the trade-off parameter λ
helps to reduce speech distortion, but in turn generates more
residual noise and musical noise in the enhanced signals.

6. RELATION TO PRIOR WORK

This paper has focused on an alternative SDW-MWF formula-
tion that does not require the clean speech correlation matrix
estimate, as opposed to previous formulations in the litera-
ture [1, 6, 7]. Furthermore, as in contrast to work that re-
quires calibration [13] or pre-calculation using a mathemat-
ical model [14, 15], this work utilizes single-channel noise
reduction technique to estimate a reference channel, which
as far as we are aware it has not been considered before. In
addition, unlike the previous approach, where SPP was only
used to adapt the trade-off parameter [9], or only to estimate
the noise correlation matrix [8], it is fully utilized by the pro-
posed framework in estimating the noise PSD in the reference
channel and also both noisy and noise correlation matrices.
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