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ABSTRACT 

 

This paper examines environment-adaptive noise 

suppression algorithms for computationally efficient or real-

time implementation in bilateral cochlear implants using a 

single processor. A generalized framework is introduced that 

allows one to train suppression and head-related transfer 

function gain tables not only for different noise 

environments but also for different distortion measures. This 

generalization incorporates any differentiable measure with 

unilateral data-driven enhancement methods becoming its 

special cases. Specifically, the solutions for three distortion 

measures of Weighted-Euclidean, Log-Euclidean and 

Weighted-Cosh are provided. These solutions are evaluated 

in six commonly encountered noise environments for a wide 

range of directionalities. 

 

Index Terms— Bilateral cochlear implants, data-driven 

speech enhancement, generalized data-driven speech 

enhancement, environment-adaptive noise suppression 

 

1. INTRODUCTION 

 

It is shown that patients fitted with Cochlear Implants (CIs) 

exhibit a good understanding of speech in quiet and 

controlled listening conditions, but in noisy environments, 

their speech understanding  decreases significantly [1, 2]. 

Many studies, e.g. [3-5], have addressed this issue by 

incorporating noise suppression algorithms in the CI speech 

processing pipeline. In our previous work [6], it was shown 

that because different noise types have different 

characteristics, using an environment-adaptive noise 

suppression strategy is more effective when operating under 

realistic conditions.  

In unilateral CIs, patients face difficulties locating 

sound sources as no directional information is perceived [7, 

8]. Bilateral CIs not only provide a sense of directionality, 

but also improve speech understanding [9, 10], [11-13]. 

However, bilateral speech enhancement normally demands 

more processing resources, that is to say it is 

computationally more expensive and needs more memory as 

discussed in [14]. 

 

In our previous works [15, 16], we achieved the real-

time implementation of an environment-adaptive speech 

enhancement approach for unilateral CIs as part of the 

speech processing pipeline on the FDA-approved PDA 

(Personal Digital Assistant) research platform [17]. In [15], 

it was shown that our adaptation approach improved the 

speech quality compared with a similar fixed noise 

suppression approach. We extended our automatic 

enhancement approach to bilateral CIs in [14] by taking 

advantage of the two signal sources. This extension was 

done by using only a single processor while retaining the 

environment-adaptability aspect of the unilateral pipeline 

leading to comparable speech quality scores in different 

noise environments. In addition, it was shown that the 

extension was computationally more efficient than 

processing the bilateral input signals independently and 

required almost the same amount of storage as in the 

unilateral enhancement. These characteristics provide a 

suitable solution for achieving a real-time implementation of 

the bilateral environment-adaptive enhancement via only a 

single processor. 

Previous works [6, 14, 15, 18] have considered the 

environment-adaptability aspect by optimizing different gain 

tables for different noise environments, but have not studied 

the effects of different optimization criteria for different 

noise types. The problem of bilateral speech enhancement 

using a single processor becomes more challenging when 

considering non-Euclidean distortion measures. In this work, 

we introduce a generalized optimization framework that 

allows the consideration of other distortion measures [19, 

20]. Specifically, we formulate our optimization for three 

most common distortion measures including the traditional 

Weighted-Euclidean (WE), Log-Euclidean (LE) and 

Weighted-Cosh (WC) [18-21]. The solutions provided are 

general purpose in the sense that they cover different 

problems with different weights over reference and non-

reference signals and with different parameter weights for 

the measures. Then, the solutions for the data-driven 

unilateral enhancement gain optimization based on the WE, 

LE and WC criteria become special cases of our generalized 

framework. Although we have considered three most 

common distortion measures, the discussed framework can 

be applied to any differentiable measure.  
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2. CI ENVIRONMENT-ADAPTIVE NOISE 

SUPPRESSION PIPELINE 

 

Our environment-adaptive CI speech processing pipeline 

discussed in [6, 15] includes two parallel paths: speech 

processing, and noise detection/classification. The speech 

processing path uses a recursive wavelet packet transform to 

decompose the input speech into different frequency bands 

as described in [22, 23]. After applying a gain function to 

the magnitude spectrum to suppress noise, it extracts channel 

envelopes and then generates stimulation pulses for 

implanted electrodes by going through the three steps of 

rectification, low-pass filtering and envelope compression. 

On the other hand, the noise detection path first uses a Voice 

Activity Detector (VAD) to determine if a current frame is 

speech or noise. If noise, a 26-dimensional MFCC feature 

vector is used to classify noise and to suppress it from 

speech according to the noise class. The data-driven method 

as described in [24-26] is then used to train the suppression 

gain function independently for each environment using a 

corresponding noise dataset. 

2.1. Unilateral data-driven enhancement 

In spectral domain speech enhancement algorithms, a gain 

function maps magnitude spectrum of the input noisy speech 

signal to an estimate of the associated clean spectrum. This 

gain is a function of prior and posterior SNRs which are 

found analytically by minimizing the mean squared error 

between noisy and clean spectral amplitudes as described in 

[24-26]. To account for modeling and estimation errors, in 

[18, 21], it was proposed to use a lookup table discretized 

over the course of prior and posterior SNR estimates as the 

gain function. The gain values of cells of a grid are obtained 

via a minimization procedure involving an appropriate error 

criterion over a training set of noisy and clean sample pairs. 

The data-driven nature and lower computationally 

complexity of this approach makes it a suitable choice for 

real-time implementation. 

2.2. Extension to bilateral CI speech enhancement using 

a single processor 

As stated above, our extension in [14] provided 

environment-adaptive speech processing for bilateral CIs 

using only a single processor. In general, there exists a delay 

between the two speech signals captured by the bilateral 

microphones. The signal that is captured first is called the 

reference signal. A time delay estimation based on 

Generalized Cross Correlation [27] determines which one is 

the reference signal. This estimation also provides part of 

the direction information required for binaural 

reconstruction of the non-reference spectral amplitudes from 

the processed reference amplitudes. The main path processes 

only the reference signal while the non-reference 

information is used to increase the reliability of the VAD 

and the classification components. An enhancement gain 

table  G  provides estimates of the reference clean spectral 

amplitudes and an estimation of Head-Related Transfer 

Function (HRTF) gain table H  provides the reconstruction 

of the non-reference amplitudes based on the information 

provided by a direction estimation component. As described 

in [14], this approach eliminates the need for a second 

processor to provide bilateral CI stimulation pulses. 

 

3. GENERALIZED DATA-DRIVEN FRAMEWORK 

FOR BILATERAL ENHANCEMENT 

 

Let the suppression gain table G  be discretized over I  

different prior SNRs and J  different posterior SNRs, that is 

{ ,  1, , ,  1, , }
ij

G i I j J      G    (1) 

Similarly, let the HRTF gain table H  be discretized over L  

different directions, 

{ ,  1, , }
l

H l L   H      (2) 

The total distortion is considered to be a linear 

combination of distortions associated with the reference and 

the non-reference spectral errors (
r

D and 
nr

D , respectively) 

as follows: 

,   0 1
r nr

D D D         (3) 

The parameter   determines the relative importance of 

non-reference errors over reference ones. 
r

D  is the mean of 

distortions associated with different prior and posterior 

SNRs, 

,

1 1

1 I J

r r ij

i j

D D
IJ  

       (4) 

where 
,r ij

D  is the mean distortion over data observed at the 

i -th prior SNR and the j -th posterior SNR. Non-reference 

errors depend not only on the suppression gain parameters 

but also on the HRTF gains, that is 

,

1 1 1

1 I J L

nr nr ijl

i j l

D D
IJL   

      (5) 

where 
,nr ijl

D  is the mean distortion over data observed at the 

l -th direction along with the i -th prior SNR and the j -th 

posterior SNR.  

       The gradient of the total distortion with respect to the 

suppression and HRTF gain parameters can be written as 

follows: 

 
, ,

1

1 1
{ }

L
r ij nr ijl

lij ij ij

D DD

G IJ G L G




 
 

  
    (6) 

,

1 1

1 I J
nr ijl

i jl l

DD

H IJL H


 




 
     (7) 

Different distortion functions can be used to compute 

,r ij
D  and 

,nr ijl
D  values. Consider ˆ( , )d A A  to be such a 

function computing the distortion between the clean spectral 
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amplitude A  and the estimated enhanced counterpart Â . 

The enhanced reference signal is then given by mapping the 

noisy reference amplitudes via G . Therefore, 

   , , ,

1

1
  ( , )

ijM

r ij r ij ij r ij

mij

D d A m G R m
M 

    (8) 

where  ,r ij
A m   is the m -th data sample of the reference 

clean spectral amplitude observed at the prior and posterior 

SNRs corresponding to the ( , )i j -th cell of the suppression 

gain table,  ,r ij
R m  is its noisy counterpart and 

ij
M  is the 

total number of data collected for this cell. 

The non-reference clean amplitudes are estimated by 

mapping the estimated reference amplitudes and using the 

HRTF gain H . Hence, 

   

'

, , ,'

' 1

1
  ( ' , ' )

ijlM

nr ijl nr ijl ij l r ijl

mijl

D d A m G H R m
M 

    (9) 

where  ,
'

nr ijl
A m   and   ,

'
r ijl

R m  are, respectively, the 

'm -th data sample of the non-reference clean and the 

reference noisy amplitudes corresponding to the ( , )i j -th 

cell of the suppression gain table and the l -th cell of the 

HRTF gain table. The total number of data is assumed to be 
'

ijl
M  for each set. 

3.1. Weighted-Euclidean distortion criterion 

The WE distortion function with weight p  is given by 

2

WE
ˆ ˆ( , ) .( )

p
d A A A A A      (10) 

Let us define the following terms to obtain a simpler 

representation, 

 1

, ,1 , ,

1

. ( )
ijM

p

r ij r ij r ij

m

S A m R m




     (11) 

  2

, ,2 , ,

1

. ( )
ijM

p

r ij r ij r ij

m

S A m R m


     (12) 

 
'

1 '

, ,1 , ,

' 1

. ( ')
ijlM

p

nr ijl nr ijl r ijl

m

S A m R m




     (13) 

 
'

' 2

, ,2 , ,

' 1

. ( ')
ijlM

p

nr ijl nr ijl r ijl

m

S A m R m


     (14) 

From (6) and (7) and based on the definitions in (8)-(14), the 

WE solutions can be derived to be 

, ,1 , ,2

2

, ,1 , ,2'

1

1 1
2 { ( )

1 1
[ ]}

r ij ij r ij

ij ij

L

l nr ijl l ij nr ijl

l ijl

D
S G S

G IJ M

H S H G S
L M





  



 

 (15) 

2

, ,1 , ,2'

1 1

1 1
2 [ ]

I J

ij nr ijl ij l nr ijl

i jl ijl

D
G S G H S

H IJL M


 


  


  (16) 

3.2. Log-Euclidean distortion criterion 

The LE distortion is defined as 
2

LE
ˆ ˆ( , ) (log[ ] log[ ])d A A A A      (17) 

Similarly, for this distortion measure, let us define the 

following terms to obtain a simpler representation, 

 

 
,

,

1 ,

log[ ]
ijM

r ij

r ij

m ij r ij

A m
P

G R m

      (18) 

 
 

' '

,

,

' 1 ,

 log[ ]
'

ijlM

nr ijl

nr ijl

m ij l r ijl

A m
P

G H R m

      (19) 

From (6) and (7) and based on the definitions in (8)-(9) and 

(17)-(19), the LE solutions can be derived to be 

, ,'

1

1 1 1 1 1
2 { }

L

r ij nr ijl

lij ij ij ijl

D
P P

G IJ G M L M





  


   (20) 

,'

1 1

1 1 1
2

I J

nr ijl

i jl l ijl

D
P

H IJL H M


 


 


    (21) 

 

3.3. Weighted-Cosh distortion criterion 

The WC distortion with weight p  is given by 

WC
ˆ( , ) .( 1)ˆ ˆp

d A A A A A A A    (22) 

Similarly, by defining 

 

 

1

,

, ,1

1 ,

ij
pM

r ij

r ij

m r ij

A m
C

R m





      (23) 

   1

, ,2 , ,

1

ijM

p

r ij r ij r ij

m

C A m R m




     (24) 

 
 

'

'

1 '

,

, ,1 '

1 ,

ijl
pM

nr ijl

nr ijl

m r ijl

A m
C

R m





      (25) 

   

'

'

1 '

, ,2 , ,

1

'
ijlM

p

nr ijl nr ijl r ijl

m

C A m R m




     (26) 

and from (6) and (7) and based on the definitions in (8)-(9) 

and (22), the following WC solutions can be derived, 

2

, ,1 , ,1'

1

, ,2 , ,2'

1

1 1
{

1 1 1 1

1 1 1
  }

ij ij

L

r ij nr ijl

lij ijl l

L

r ij l nr ijl

lij ijl

D

G IJ G

C C
M L M H

C H C
M L M










 





 

 
 
 





   (27) 
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, ,12 '

1 1

, ,2'

1 1

1 1 1 1
{

1
}

I J

nr ijl

i jl l ij ijl

I J

ij nr ijl

i j ijl

D
C

H IJL H G M

G C
M





 

 


 









   (28) 

 

4. RESULTS AND DISCUSSION 

 

Having extracted solutions in (15)-(16) for the WE, in (20)-

(21) for the LE, and in (27)-(28) for the WC distortions, any 

gradient-based non-linear optimization method can be used 

to train the gain parameters. Here, we used the simple 

steepest descent together with a momentum-based learning 

rate adaptation (used a momentum multiplier of 0.9). 

Learning rates were considered to be 0.5, 1e-6 and 5e-7 for 

WE, LE and WC, respectively. All the common settings 

were chosen the same as the ones in [14] for comparison 

purposes. The IEEE sentences [28] were used as clean 

speech signals and the CIPIC HRTF dataset [29] was used to 

generate the HRTF-convolved reference and non-reference 

noise, noisy and clean speech training and testing data. The 

CIPIC data for 13 different azimuth angles at 0° of elevation 

was used for training and testing. Noise data were recorded 

using the BTE microphones in real environments with the 

PDA research platform in six commonly encountered noise 

environments of Street, Car, Restaurant, Mall, Bus and 

Train, and then were added to the clean speech signals at 5 

dB SNR. 

Table 1 shows the PESQ (Perceptual Evaluation of 

Speech Quality) scores [30] for each noise environment 

averaged over reference and non-reference outcomes 

( 1  ) and over 13 different angles. In each test case, 50 

IEEE speech files (not seen during training) were used (total 

of 650 test samples for each environment).  

Segmental SNR [31] improvements are also presented here 

to show how each method reduced noise levels. It can be 

seen that although WC provided the highest SNR 

improvements, it did not reach the highest quality scores 

except in Restaurant and Train environments. These 

differences were statistically significant at 99% confidence 

level. This implied that WC reduced noise more than the 

other methods but also caused removal of parts of speech, 

thus introducing distortions and causing speech quality loss. 

WE and LE did not result in significant SNR+ or PESQ 

score differences, but both provided higher PESQ scores in 

Mall and higher SNR+ in Street, Mall and Train than the 

direct estimation method in [14] (Dir) at 95% confidence 

level and in all the other environments at 99% confidence 

level. Using a  noise environment recognition approach such 

as the ones in [14, 15], the best performing gain for each 

environment was loaded to the pipeline suppression 

component. 

 

Table 1 – Segmental SNR improvements and PESQ scores for different 

methods of direct quasi-static gain estimation in [14] (Dir), gradient-based 

training based on Weighted-Euclidean (WE), Log-Euclidean (LE) and 

Weighted-Cosh (WC) distortion measures. Corresponding values for no 

suppression (N/S) are also shown for comparison. 

 

Noise Class  Segmental SNR+ PESQ 

Street 

N/S 0 2.13 (±0.15) 

Dir 1.33 (±0.68) 2.38 (±0.13) 

WE 1.50 (±0.69) 2.40 (±0.13) 

LE 1.55 (±0.69) 2.40 (±0.13) 

WC 2.83 (±1.13) 2.38 (±0.17) 

Car 

N/S 0 1.99 (±0.12) 

Dir 1.36 (±0.39) 2.20 (±0.10) 

WE 1.54 (±0.38) 2.22 (±0.10) 

LE 1.54 (±0.40) 2.22 (±0.10) 

WC 2.69 (±0.65) 2.12 (±0.13) 

Restaurant 

N/S 0 2.08 (±0.14) 

Dir 0.92 (±0.41) 2.15 (±0.12) 

WE 1.12 (±0.42) 2.18 (±0.12) 

LE 1.10 (±0.42) 2.18 (±0.12) 

WC 2.84 (±0.78) 2.23 (±0.14) 

Mall 

N/S 0 2.07 (±0.14) 

Dir 1.58 (±0.43) 2.27 (±0.12) 

WE 1.72 (±0.44) 2.29 (±0.12) 

LE 1.77 (±0.44) 2.29 (±0.12) 

WC 3.02 (±0.76) 2.14 (±0.14) 

Bus 

N/S 0 2.04 (±0.14) 

Dir 1.66 (±0.43) 2.34 (±0.12) 

WE 1.84 (±0.42) 2.36 (±0.11) 

LE 1.84 (±0.44) 2.36 (±0.11) 

WC 4.14 (±0.72) 2.31 (±0.17) 

Train 

N/S 0 2.01 (±0.13) 

Dir 1.79 (±0.47) 2.31 (±0.11) 

WE 1.94 (±0.45) 2.33 (±0.11) 

LE 1.97 (±0.48) 2.32 (±0.10) 

WC 4.38 (±0.60) 2.34 (±0.13) 

 

5. RELATION TO PRIOR WORK 

 

The unilateral environment-adaptive noise suppression 

pipeline developed in [15] detects the environment noise 

type automatically and tunes parameters of the suppression 

gain appropriately. The entire pipeline runs in real-time [16] 

on the FDA-approved PDA research platform [17]. The 

extension proposed in [14] for bilateral CIs provides a 

computationally efficient bilateral stimulation version of this 

pipeline. It adds minimal storage requirements to the 

unilateral pipeline and runs on a single processor. This work 

addresses a generalization of the optimization framework for 

single-processor bilateral enhancement that was presented in 

[14] by providing generalized solutions where unilateral 

counterparts (e.g. [15, 18, 21]) become its special cases. 

This work is the first attempt to provide a generalized data-

driven enhancement approach for bilateral cochlear implant 

stimulation using a single processor. 
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