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ABSTRACT

This paper discusses microphone array based interference reduction
approaches for robust automatic speech recognition. A model based
multichannel spectral enhancement approach has recently been pro-
posed for effectively reducing interference by exploiting both the
spatial and spectral features of the signals. With the goal of further
improving the effectiveness of this approach, we propose a new
framework that combines this approach with a microphone-array
based beamforming approach. Because the two approaches can
work in a complementary manner in the proposed framework, they
can greatly improve the interference reduction performance. We
apply the proposed framework to the recognition of actual meetings,
and show that it is superior to the use of beamforming or spectral
enhancement alone in terms of the word error rates.
Index Terms: Speech enhancement, microphone array, model based
approach, meeting recognition

1. INTRODUCTION

When we capture speech using distant microphones, various types
of interference are mixed with the captured signals, thereby severely
degrading automatic speech recognition (ASR) performance.

Microphone-array based beamforming has been studied as an
approach that can reduce such interference in the captured signals
[1, 2, 3, 4]. It controls the directivity pattern of the microphone
array based on multichannel linear filtering so that it can extract
signal components that come from the target talker’s direction.
Blind source separation (BSS) [5, 6] can be viewed as a technique
that controls directivity patterns in a blind processing manner [7].
While beamforming can significantly reduce interference from point
sources, the performance degrades when the interference arrives
from many directions, due to the presence of diffuse noise and
reverberation.

On the other hand, a model based multichannel spectral en-
hancement approach has recently been proposed for estimating clean
speech spectra from a captured signal by exploiting the spectral and
spatial features of the signals and their statistical models [8]. This
approach is referred to as DOminance based Locational and Power-
spectral cHaracteristics INtegration (DOLPHIN). DOLPHIN is
an extension of a factorial model based spectral enhancement ap-
proach [9, 10, 11], and can improve spectral enhancement accuracy
by jointly utilizing the two features. For example, thanks to the
use of the two features, spectral enhancement can be effectively
achieved even when one of the features is not very reliable for the
enhancement. One limitation of this approach is that the spectral
enhancement does not modify the phase of the signals, and thus
is not as effective as beamforming at canceling out point source
interference.
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Fig. 1. Basic framework: Beamforming first reduces interference
in the captured signal based on multichannel linear filtering. DOL-
PHIN then extracts the spectral feature, Yt,f , from the beamforming
output, and the spatial feature, Ψt,f , from the multichannel obser-
vation. Then, DOLPHIN estimates the parameters of the source sig-
nal components included in the spectral feature, and finally applies
spectral enhancement to the spectral feature to obtain the estimated
speech, ŝ(n0)

t,f .

In this paper, to achieve better interference reduction using mi-
crophone arrays, we propose a new framework, in which both beam-
forming and DOLPHIN are utilized in a coupled system (see Fig. 1).
In the framework, the beamforming first estimates a talker’s speech
based on captured signals by multichannel linear filtering, while
DOLPHIN refines the speech spectral estimate of the utterance based
on the spectral and spatial features. This framework allows the two
methods to work in a complementary manner in that the point source
interference can be well handled by the beamforming and the resid-
ual interference, including non-point source interference, can be ef-
fectively handled by DOLPHIN based on the two features. We show
the superiority of the proposed framework by applying it to a meet-
ing speech recognition task [12]. Note that in this framework, DOL-
PHIN needs to adapt to the amplitude modifications of the source
components that the beamforming inevitably introduces. Thus, this
paper also shows how DOLPHIN can adapt the channel parameters
of the spectral model in an unsupervised manner based on an exam-
ple configuration1 of DOLPHIN.

It is important to note that researchers have been studying other
frameworks for coupling beamforming with a model based single-
channel spectral enhancement approach [13, 14]. These approaches
can also provide better ASR performance than without the coupling.
However, the spatial information obtained from the multichannel ob-
servation is not used directly to improve the spectral enhancement,
except for the information obtained from the output of the beam-
former. As a result, the performance of these approaches depends
largely on the accuracy of the beamforming.

1The main contribution of this paper is the proposal of the framework. In
the framework, we can adopt various configurations for DOLPHIN, which
have been presented, for example, in [8].
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2. COUPLING OF BEAMFORMING AND DOLPHIN

Suppose that N (≥ 1) talkers’ utterances are captured by M (≥ 2)
microphones jointly with ambient noise. Let t and f be time and
frequency indices at a TF bin in the short time Fourier transform
(STFT) domain, m (= 1..M ) be a microphone index, and n (=
0..N ) be a source index, where n ≥ 1 represents one of N talkers
and n = 0 represents the ambient noise. Then, the captured signal
at a TF bin is modeled by

y
(m)
t,f =

NX
n=0

x
(n,m)
t,f , (1)

x
(n,m)
t,f = h

(n,m)
f s

(n)
t,f for n ≥ 1, (2)

where y
(m)
t,f and x

(0,m)
t,f are the STFTs of the captured signal and the

ambient noise at the m-th microphone, s(n)
t,f and x

(n,m)
t,f for n ≥ 1

are the STFTs of the n-th talker’s speech and its m-th microphone
image, and h(n,m) is the acoustic transfer function from the n-th
talker to them-th microphone. Then, letting the 1-st microphone be
the reference microphone, the goal of the speech enhancement for
each talker n0 is to obtain an estimate of s

(n0)
t,f , denoted by ŝ

(n0)
t,f ,

included in y
(1)
t,f as the n0-th target signal, where x

(n,1)
t,f for n �= n0

and x
(0,1)
t,f are regarded as interference signals to be reduced.

2.1. Basic framework: Single source extraction

To highlight the fundamental feature of the proposed framework, we
start by discussing a simple version of the framework, referred to as
the basic framework, which estimates utterances spoken by only one
of the talkers, indexed by n0. Later, we generalize it to an advanced
framework, which can simultaneously handle multiple talkers.

Fig. 1 shows the processing flow of the basic framework. As in-
dicated in the figure, the basic framework first conducts beamform-
ing to estimate the n0-th talker’s utterances. The beamforming ap-
plies multichannel linear filtering to the multichannel observation as
ŷt,f =

P
m w

(n0,m)
f y

(m)
t,f , where w

(n0,m)
f is a filter coefficient that

enhances the n0-th talker. The n0-th talker’s speech estimated based
on beamforming can be represented by

ŷt,f =

NX
n=0

x̂
(n)
t,f , (3)

x̂
(n)
t,f = ĥ

(n)
f s

(n)
t,f for n ≥ 1, (4)

where ĥ
(n)
f =

P
m w

(n0,m)
f h

(n,m)
f is a filtered acoustic transfer

function, and x̂
(0)
t,f =

P
m w

(n0,m)
f x

(0,m)
t,f is the ambient noise re-

maining in ŷt,f . The above equations indicate that the beamforming
only modifies the acoustic transfer functions of each source. The
signal-to-interference ratio can be reduced by appropriately control-
ling the filter coefficients, w(n0,m)

f . For example, when ĥ
(n)
f = 0

is satisfied, the corresponding interference source is cancelled out.
For such control, many techniques have been proposed for the blind
estimation of filter coefficients [5, 6].

In the proposed approach, the output of the beamforming, ŷt,f ,
is then input into DOLPHIN as shown in Fig. 1, and treated as a ref-
erence signal, from which the target signal is estimated. By compar-
ison with the case without beamforming, where DOLPHIN uses y(1)

t,f

as the reference signal instead of ŷt,f , the spectral estimation can be
more precise because ŷt,f contains less interference than yt,f . In

addition, with this framework, we do not need to modify the pro-
cessing of DOLPHIN by simply considering ŷt,f as a microphone
observation affected by different acoustic transfer functions.

Note that our preliminary experiments confirmed that it is also
important to add the original reference signal multiplied with a cer-
tain weight α (= 0.2), namely αy

(1)
t,f , to the output of the beamform-

ing before it is input into DOLPHIN, as in Fig. 1. This is because it
can avoid the case where certain target signal components are exces-
sively reduced by the beamforming due to certain estimation errors.

2.2. DOLPHIN in basic framework

In this subsection, we present an example configuration of DOL-
PHIN to show how it can handle the signals in the basic frame-
work. For this discussion, we adopt the simplest configuration of
DOLPHIN for conciseness, where the spectral models are defined
as Gaussian mixture models (GMM) for source log-spectra and no
spatial models are utilized. The use of spatial models is discussed
in Section 2.2.3 and the way of using other spectral models, such as
GMMs for source mel-frequency cepstral coefficients (MFCC), can
be found in [8, 15].

In Fig. 1, a spectral feature extraction (FE) block first extracts
the spectral features, Yt,f , from the reference signal, ŷt,f . Here, we
adopt log-spectra as the spectral feature, which is obtained as

Yt,f = log |ŷt,f |2. (5)

To analyze the above feature, DOLPHIN introduces a fundamental
assumption, namely each TF bin of the reference signal is dominated
by one of the sources, and the spectral feature at the TF bin is equal
to that of the dominant source. Letting dt,f be the index of the dom-
inant source at each TF bin, referred to as the dominant source index
(DSI), and lettingX

(n)
t,f , S

(n)
t,f , andH

(n)
f be log-spectra of x̂(n)

t,f , s
(n)
t,f ,

and ĥ
(n)
f defined as in eq. (5), this assumption is represented as

dt,f = arg max
n
{X(n)

t,f }, (6)

Yt,f = X
(dt,f )

t,f , (7)

whereX
(n)
t,f can be further decomposed based on eq. (4) into the n-th

talker’s speech, S(n)
t,f , and its channel response,H

(n)
f , as

X
(n)
t,f = S

(n)
t,f + H

(n)
f for n ≥ 1. (8)

Then, we define the spectral model for each talker’s speech by using
a GMM as

p(S
(n)
t,f ) =

X
i

wip(S
(n)
t,f |i(n)

t = i), (9)

p(S
(n)
t,f |i(n)

t = i) = N (S
(n)
t,f ; μi,f , σi,f ). (10)

Here, i is the Gaussian index, and wi, μi,f , and σi,f are model pa-
rameters representing the mixture weight, the mean, and the vari-
ance of the i-th component, respectively. The model parameters are
trained in advance, and can be speaker dependent or independent.
The spectral model of the ambient noise is, on the other hand, mod-
eled in this paper by a single Gaussian as

p(X
(0)
t,f ) = N (X

(0)
t,f ; μ

(0)
f , σ

(0)
f ). (11)

We assume the model parameters, μ(0)
f and σ

(0)
f , can be estimated

from speech absent segments of the reference signal2.
2Parameters, μ(0)

f and σ
(0)
f , can also be estimated jointly with the other

parameters in the course of the EM iterations as discussed in [8].
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2.2.1. Parameter estimation with channel adaptation

In the basic framework, unknown parameters to be estimated are
the Gaussian index, i(n)

t,f , and the channel response, H
(n)
f , for each

spectral model3, which are denoted as θ = {H, i}, where each
bold face symbol indicates a set of all parameters associated with
the symbol. DOLPHIN maximizes an optimization function de-
fined as p(Y, i; θ) to estimate θ, and it is accomplished based on the
expectation-maximization (EM) algorithm, assuming that the DSIs,
dt,f , are handled as hidden variables. According to the discussion in
[8], the auxiliary function for the EM algorithm can be defined and
rewritten as

Q(θ|θ̂) = E|θ̂{log p(Y,d, i; θ)} =
X

n

X
t

Q
(n)
t (θ(n)|θ̂), (12)

Q
(n)
t (θ(n)|θ̂) =

X
f

n
D

(n)
t,f p(X

(n)
t,f = Yt,f |i(n)

t,f ; θ(n))

+(1−D
(n)
t,f )

Z Yt,f

−∞
p(X

(n)
t,f |i(n)

t ; θ(n))dX
(n)
n,f

ff
+ log p(i

(n)
t ), (13)

where θ(n) is a subset of θ composed only of parameters associated
with the n-th source, andD

(n)
t,f = p(dt,f = n|Yt,f , î

(n)
t ; θ̂(n)) is the

posterior of a DSI. In eq. (13), p(X
(n)
t,f |i(n)

t ) for n ≥ 1 andD
(n)
t,f can

be rewritten, using the spectral model and the channel response, as

p(X
(n)
t,f |i(n)

t ; θ(n)) = p(S
(n)
t,f = X

(n)
t,f −H

(n)
f |i(n)

t ), (14)

D
(n)
t,f =

p(Yt,f , dt,f = n|̂i(n)
t ; θ̂)P

n′ p(Yt,f , dt,f = n′ |̂i(n)
t ; θ̂)

, (15)

p(Yt,f , dt,f = n|̂i(n)
t ; θ̂) = p(X

(n)
t,f = Yt,f |̂i(n)

t ; θ̂)

×
Y

n′ �=n

Z Yt,f

−∞
p(X

(n′)
t,f |̂i(n)

t ; θ̂(n))dX
(n′)
t,f . (16)

The processing flow for estimating θ and the DSI posteriorD(n)
t,f

based on the EM algorithm is summarized in Algorithm I.

2.2.2. Spectral enhancement

After the parameter estimation, DOLPHIN estimates X
(n0)
t,f and

S
(n0)
t,f of the n0-th talker based on a minimum mean square error
(MMSE) estimation as

X̂
(n0)
t,f = D

(n0)
t,f Ŷt,f+(1−D

(n0)
t,f )

R Ŷt,f
−∞ X

(n0)
t,f p(X

(n0)
t,f |̂i(n0)

t ; θ̂)dX
(n0)
t,f

R Ŷt,f
−∞ p(X

(n0)
t,f |̂i(n0)

t ; θ̂)dX
(n0)
t,f

,

(17)
Ŝ

(n0)
t,f = X̂

(n0)
t,f − Ĥ

(n0)
f . (18)

The enhanced speech waveform can then be calculated by using an
inverse Fourier transform of exp(Ŝ

(n0)
t,f /2) with the phase of the ref-

erence signal followed by overlap-add synthesis.

2.2.3. Incorporation of spatial features

As discussed in [8], the spatial features can be incorporated into
DOLPHIN in an integrated manner. The incorporation improves the
estimation of the DSI posterior,D(n)

t,f , and thus improves the param-
eter estimation and the spectral enhancement by eqs. (17), (19), and
(20).

3S
(n)
t,f andX

(0)
t,f can be marginalized out from p(Y, i; θ).

Algorithm I: Parameter estimation by DOLPHIN

1. Initialize the DSI posteriorD(n)
t,f .

2. Iterate the following until convergence is obtained

(a) (M-step-1) Update the optimal GMM index of each source for
n ≥ 1 at each time frame t as

î
(n)
t = arg max

i
Q

(n)
t (i

(n)
t |θ̂) (19)

(b) (M-step-2) Update the channel response, Ĥ(n)
f , for each source

n ≥ 1 based on the Newton-Raphson method as

Ĥ
(n)
f = Ĥ

(n)
f −

0
@X

t

∂2Q(n)(θ(n)|θ̂)

(∂H
(n)
f )2

1
A
−1X

t

∂Q(n)(θ(n)|θ̂)

∂H
(n)
f

(20)
where ∂2Q

(n)
t /(∂H

(n)
f )2 and ∂Q

(n)
t /∂H

(n)
f are a gradient

vector and a Hessian matrix ofQ(n)
t , respectively.

(c) (E-step) Update the DSI posterior,D(n)
t,f , for each source n and

at each TF bin by eq. (15) (or by eq. (22)).

This paper adopts the same scheme as that used in [8, 16, 17] for
the treatment of the spatial features. The spatial feature is defined as
Ψt,f = yt,f/||yt,f ||, where yt,f = [y

(1)
t,f , . . . , y

(M)
t,f ] and || · || is the

Euclidean norm of a vector. Because this feature includes informa-
tion on the level and phase differences between microphones, it can
be used as the spatial feature. Based on the sparseness assumption
[18], the spatial feature of the reference signal at each TF bin is as-
sumed to be equal to that of the dominant source. Accordingly, the
pdf of the spatial feature of the reference signal can be modeled by a
mixture model as

p(Ψt,f ) =
X

n

znp(Ψt,f |n; λ
(n)
f ), (21)

where p(Ψt,f |n; λ
(n)
f ) is a pdf of the spatial feature of the n-th

source at frequency f , and zn is the mixture weight. We adopt the
pdf proposed in [16] for this model. With this model, we can es-
timate the model parameter, λ(n)

f , for all speech sources n ≥ 1 in
a blind processing manner from the multichannel observation. It is
also possible to estimate the model parameter for the ambient noise,
λ

(0)
f , using a multichannel observation during the speaker absent
segments4.

With the spatial feature, the same parameter set, θ, is estimated
by DOLPHIN as one that maximizes the optimization function de-
fined as p(Y,Ψ, i; θ). The estimation can still be accomplished
based on the EM algorithm, where we only need to modify the up-
date equation of the DSI posterior in eq. (15) as

D
(n)
t,f =

p(Ψt,f |n; λ
(n)
f )p(Yt,f , dt,f = n|̂i(n)

t ; θ̂)P
n′ p(Ψt,f |n′; λ(n)

f )p(Yt,f , dt,f = n′ |̂i(n)
t ; θ̂)

, (22)

Based only on this modification, we can incorporate the spatial fea-
tures into DOLPHIN to improve the spectral enhancement.

2.3. Advanced framework: Multiple source extraction

Suppose a case where beamforming can generate two or more out-
puts simultaneously corresponding to different talkers in the cap-

4Speaker absent segments can also be estimated from the captured signal
based on the spatial features as discussed in [15].
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Fig. 2. Processing flow of DOLPHIN in advanced framework

Table 1. Specifications of meeting database [12]
Office room Soundproof room

T60 in ms 350 ms 120 ms
SNR 15 to 20 dB 20 to 25 dB
#Mics / #Talkers 8 / 4
Mic.-talker distance 1 m

tured signal. Many beamforming techniques are now available for
this purpose [5, 6]. Even in this case, we can also adopt the basic
framework to handle each output separately. However, this is ob-
viously not optimal because each output contains the same set of
speech sources, s(n)

t,f , and it is more appropriate to use all the outputs
for estimating each source at the same time. The advanced frame-
work is introduced to achieve this.

Fig. 2 shows the processing flow of DOLPHIN for the advanced
framework, where two reference signals, ŷ(1)

t,f and ŷ
(2)
t,f , are assumed

to be input into DOLPHIN. With the advanced framework, the same
optimization function as that of the basic framework is defined for
each reference signal, and the optimization is conducted by maxi-
mizing the sum of all the functions, assuming that the Gaussian in-
dices, i

(n)
t , of each source are shared by the functions. The same

EM algorithm as in Algorithm I is derived for each reference signal
except for the update of î(n)

t in M-step-1. The updates of î(n)
t can be

obtained as those that maximize the sum of Q
(n)
t over all the refer-

ence signals. Note that the same spatial features are shared by all the
parameter estimation blocks as in Fig. 2.

3. EXPERIMENTS

We evaluated the proposed advanced framework using a meeting
recognition task [12]. Table 1 summarizes the specifications of the
meeting database used for the experiments. The meeting data were
recorded in an office and a soundproof room, and consist of 68 ses-
sions of meeting recordings (44 in the training set, 8 in the devel-
opment set, and 16 in the test set). In each session, four talkers sit
around a round table, and utterances generated by the talkers were
recorded by 8 microphones located at the center of the table, referred
to as table microphones. A headset was also used to record each
talker’s utterances for reference. Each session was about 15 minutes
long, and each talker was assumed to be stationary at an unknown
position during the session. The utterances generated by talkers may
overlap, and are contaminated by stationary ambient noise, such as
fan noise. The sampling frequency was 16 kHz. As indicated by
Baseline in Table 2, the word error rates (WER) obtained by the
SOLON recognizer [19] were very high when using the table micro-
phones without any noise reduction preprocessing, and were much
lower when we used the headsets as indicated by Headset in the ta-
ble. This suggests that a major factor contributing to the high WERs
of Baseline was the use of distant talking systems.

Table 2. WERs (%) of meeting recordings (test set) made in an
office / a soundproof room.

w/o AM adaptation w/ AM adaptation
Headset 30.6 / 40.7 27.0 / 36.1
Baseline 86.5 / 79.8 80.5 / 79.0
ICA 60.6 / 59.6 49.5 / 48.1
MVDR 47.1 / 52.6 37.6 / 43.9
DOLPHIN 49.2 / 48.9 41.1 / 45.1
ICA+DOLPHIN 43.8 / 45.6 37.9 / 41.6
MVDR+DOLPHIN 40.6 / 48.0 35.5 / 42.7

For the beamforming, we adopted two different source separa-
tion methods, an independent component analysis (ICA) based BSS
[5] and a minimum variance distortionless response beamforming
(MVDR) based BSS [6]. For DOLPHIN, we adopted spectral mod-
els represented by GMMs of source MFCCs as proposed in [8, 15].
The window length and shift for DOLPHIN were set at 0.1 s and
0.025 s, respectively, and the dimensions of the filterbank and the
MFCC were set at 40 and 13, respectively. We used the Corpus
of Spontaneous Japanese (CSJ) [20] to train a talker independent
spectral model, which was used for all the talkers. Because the CSJ
was recorded with a headset, it has large channel mismatches with
the meeting recordings. For the ambient noise, the spectral model
was estimated from each meeting recording under evaluation in the
course of the EM iteration as discussed in [8]. The spatial models
were also estimated from each meeting recording under evaluation
according to the methods described in Section 2.2.3.

For ASR, we used a speaker independent acoustic model trained
on the CSJ based on a differential maximum mutual information
(dMMI) criterion [21]. The language model was trained on tran-
scriptions extracted from the CSJ, the training set of the meeting
database, and web pages on the World Wide Web. The total vocab-
ulary size of the ASR system was 156,000. The recognition was
performed for each session with and without unsupervised acoustic
model (AM) adaptation based on maximum-likelihood linear regres-
sion (MLLR) [22].

Table 2 summarizes the WERs obtained without any prepro-
cessing (Baseline), with ICA, MVDR, or DOLPHIN, and with
the advanced framework (ICA+DOLPHIN, MVDR+DOLPHIN). It
clearly shows that each preprocessing method, namely ICA, MVDR,
and DOLPHIN, greatly reduced the WERs, and the advanced frame-
work further reduced the WERs. It is interesting to note that the
two WERs obtained by the advanced framework are very close to
each other although those obtained solely by beamforming are very
different from each other. This suggests that DOLPHIN’s use of the
spatial and spectral features makes the performance of the proposed
framework less dependent on that of the beamforming.

4. CONCLUDING REMARKS

This paper proposed an interference reduction framework using a
microphone array for robust automatic speech recognition. The pro-
posed framework, which is composed of beamforming and DOL-
PHIN, is very advantageous because the former reduces the inter-
ference by controlling the directivity patterns of microphone arrays
while the latter reduces the residual interference by spectral enhance-
ment based on both the spatial and spectral features of a multichan-
nel observation. We experimentally showed that the WERs were
greatly improved when we applied the proposed framework to a
large vocabulary meeting recognition task with actual recordings.
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