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ABSTRACT

This paper addresses the dual-microphone noise reduction
problem in mobile phone application. We propose to use
the inter-microphone Posteriori SNR Difference (PSNRD)
for Speech Presence Probability (SPP) estimation, which is
more robust than the Power Level Difference (PLD) that
is often used previously. Additionally, we use the recently
reported multichannel minimum variance distortionless re-
sponse (MVDR) filter for noise reduction. We divide the
noises into quasi-stationary and transient components, and
propose an SPP-based noise correlation matrix estimator.
Analysis and experiments on data recorded in real environ-
ments verify the robustness of the PSNRD. The SPP-based
estimator is more appropriate for the MVDR filter in tracking
transient noise, and the proposed MVDR filter can lead to
high noise reduction and small speech distortion.

Index Terms— Dual-microphone, noise reduction, MVDR
filter, speech presence probability

1. INTRODUCTION

The fast developments of mobile techniques provide us many
kinds of mobile devices. Mobile phone is nowadays used al-
most everywhere for communication around the world. Since
the acoustic environments in which people are talking are
quite different, it is necessary to use speech enhancement
technology to provide high quality speech signals.

It is known that single channel speech enhancement is not
capable of dealing with highly non-stationary noise in out-
door environments. To get better speech quality, many mo-
bile phone manufacturers begin to deploy two or three micro-
phones in their products. In a typical dual-microphone config-
uration, the front bottom microphone is a primary one, while
the rear top microphone is a secondary one. Note that the
dual-microphone noise reduction for mobile phone is differ-
ent from general dual-channel speech enhancement, e.g. in
hearing-aids [1] or speech enhancement [2] . It generally as-
sumes that the primary microphone receives stronger speech
than the secondary one, and due to the shadow of user’s head,
hand and the phone body, the secondary microphone receives
approximate or stronger noise than the primary one. So the

inter-microphone Power Level Difference (PLD) is often ex-
ploited for voice activity detection (VAD) and noise estima-
tion, such as in [3]. However, the difference between the sen-
sitivities of the dual microphones influences the PLD greatly,
which makes it difficult to decide the corresponding thresh-
olds.

Another problem is that the secondary signal is only used
in VAD and noise estimation but not in the enhancement pro-
cedure. Recently, a series of researches on the multichannel
MVDR filter based on a new decomposition theory is exam-
ined. They verified that the new MVDR filter can provide
very promising results compared to Wiener filter [4, 5, 6].
However, they all focus on the theoretical works and assume
the noise is estimated perfectly. This, in fact, is a very chal-
lenge problem and directly influences the performance of the
optimal filter.

In this paper we firstly propose to use the Posteriori SNR
Difference (PSNRD) of inter-microphone for Speech Pres-
ence Probability (SPP) estimation. We will show that it is
more reliable to assume that the posteriori SNR of the pri-
mary microphone is higher than that of the secondary one.
Secondly, we introduce an SPP-based noise correlation ma-
trix estimator and involve the multichannel MVDR filter.
With data recorded in different environments using two dual-
microphone deployments, the experimental results show that
the proposed MVDR filter can provide high noise reduction
and small speech distortion.

2. PSNRD AND SPP ESTIMATION

The noises in mobile applications are quite complicated. We
divide them into quasi-stationary and transient components.
The former has a spectrum that changes slowly, such as en-
gine noise and sensor noise. It can be estimated using many
reported single channel estimator, such as in [7, 8]. The lat-
ter consists of interferences that burst suddenly and unexpect-
edly, which is very difficult to suppress in single microphone
situation. By transforming into time-frequency domain, the
dual-microphone signal model can be expressed as
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ym (k, n)= xm (k, n) + vm (k, n) + um (k, n)

= xm (k, n) + om (k, n) , (m = 1, 2) , (1)

where ym (k, n), xm (k, n), and om (k, n) are the spectral co-
efficients of the received signals, the desired signals, the unde-
sired environment sound signals, respectively. vn (k,m), and
um (k, n) are the quasi-stationary noises and the transient in-
terferences. k is subband index and n is time-frame index. m
is the microphone index. m = 1 refers to the primary micro-
phone and m = 2 is the secondary microphone. We assume
that xm (k, n), vm (k, n), and um (k, n) are uncorrelated to
each other.

The normalized PLD of inter-microphone is simply de-
fined as

∆φ (k, n) =
φy1 (k, n)− φy2 (k, n)

φy1 (k, n) + φy2 (k, n)
, (2)

where φym (k, n) = E
[
|ym (k, n)|2

]
is the variance of

ym (k, n). The PLD is often used for VAD in mobile phone
applications. The reason is that when a user holds his/her
dual-microphone phone and talks, his/her mouth is close to
the primary microphone, and his/her head, hand, and the
phone body will disturb the sound propagation to the sec-
ondary microphone. Therefore the speech picked up by the
primary microphone is louder than the secondary micro-
phone. The additive noises are different. For example, in
diffuse noise field, the noises picked up by both microphones
are approximately the same. While in free space, if some
other speaker is talking on the opposite side to the target
speaker, the secondary microphone will pick up stronger
interferences than the primary one.

However, the above observations are based on the as-
sumption that the sensitivities of the two microphones are
same. Apparently, in (2), if we change the gain of each mi-
crophone, i.e. the sensitivity, the PLD will change as well.
Hence it is difficult to determine the correct thresholds for
VAD.

We propose another VAD flag, the posteriori SNR differ-
ence (PSNRD), which is defined as

∆γ (k, n)
∆
=
γ1 (k, n)− γ2 (k, n)

γ1 (k, n) + γ2 (k, n)
, (3)

where γm (k, n) is the posteriori signal to quasi-stationary
noise ratio (PSNR), i.e.

γm (k, n)
∆
=
φym (k, n)

φvm (k, n)
. (4)

Note that the denominator of (4) is φvm (k, n), i.e. the vari-
ance of the quasi-stationary noise. The basic assumption then,
is that the SNR of the primary microphone is always higher

than that of the secondary microphone. In case that the pri-
mary microphone has higher sensitivity, this assumption still
holds since all signals in the primary microphone are ampli-
fied by same gain. Therefore the PSNRD is independent of
the microphones’ sensitivity.

Then the SPP estimator is straightforward using a simply
linear mapping from the PSNRD, as

p (k, n) =


1 ∆γ (k, n) > ∆γmax
∆γ(k,n)−∆γmin

∆γmax−∆γmin
else

0 ∆γ (k, n) < ∆γmin

(5)

3. DUAL-CHANNEL NOISE REDUCTION

The reported noise reduction approaches with dual-microphone
phone, such as in [3], aim at finding correct spectral gains, and
applying them on the signals of the primary microphone to
enhance the desired speech. The inter-microphone correlation
is used but with strict limitation. Recently, a multi-channel
MVDR filter considering both the inter-channel and inter-
frame correlations is proposed [6], which improves the full-
band SNR with small speech distortion. However, in spite of
the very promising performance, the correlated works on the
MVDR filter [4, 5] all assume the noise correlation matrix
is perfectly estimated, which in fact, influences the MVDR
performance greatly. In this section, we firstly introduce the
multi-channel MVDR filter into our dual-microphone noise
reduction problem, then provide an SPP-based estimator for
correlation matrix estimation. The detail explanation about
the multi-channel optimal noise reduction filter in STFT do-
main refers to [9].

Firstly, we rewrite the signal model in (1) into array nota-
tion:

y (k, n) = x (k, n) + v (k, n) + u (k, n)

= x (k, n) + o (k, n) , (6)

where

y (k, n) = [y1 (k, n) , y2 (k, n)]T

y (k, n) = [y(k, n)
T
,y(k, n− 1)

T
, · · · ,y(k, n− L+ 1)

T
]T ,

and L is the number of consecutive time-frames used for each
subband. The superscript T denotes transpose operator. x,
v, u, and o are defined in a similar way. Then the dual-
microphone noise reduction can be simply expressed as

x̂1 (k, n) = hH (k, n)y (k, n)

= hH (k, n)x (k, n) + hH (k, n)o (k, n)

= x1f (k, n) + orn (k, n) , (7)

where the superscript H denotes transpose-conjugate opera-
tor. We take the clean speech signal picked by the primary
microphone, i.e. x1 (k, n), as the desired signal. By decom-
posing the vector x (k, n) into two orthogonal components
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depending on the correlation with the desired x1 (k, n), (7) is
rewritten as [6]

x̂1 (k, n) = x1 (k, n)hH (k, n)d∗
x (k, n) +

hH (k, n)xi (k, n) + hH (k, n)o (k, n)

= xfd (k, n) + xri (k, n) + orn (k, n) , (8)

where
E [x1 (k, n)x∗

i (k, n)] = 0, (9)

and

dx (k, n) =
E [x1 (k, n)x∗ (k, n)]

E
[
|x1 (k, n)|2

] =
Φx (k, n) i0
φx1 (k, n)

, (10)

where Φx (k, n) = E
[
x (k, n)xH (k, n)

]
is the correlation

matrix of x (k, n). i0 is the first column of the identity matrix.
Now using MSE criterion with distortionless constraint,

one can derive the optimal MVDR filter as

hMVDR (k, n) =
Φ−1

y (k, n)d∗
x (k, n)

dTx (k, n) Φ−1
y (k, n)d∗

x (k, n)
. (11)

Φy (k, n) is the correlation matrix of y (k, n). The key merit
of the MVDR filter is that no distortion will occur in the de-
sired signal, and the residual noise is more pleasant compared
to Wiener filter. Although in theory, the MVDR filter can pro-
vide maximum output SNR as Wiener filter; in practice, its
noise reduction performance is modest compared to Wiener.

Now, the essential problem is to estimate the correlation
matrix, Φy (k, n) and dx (k, n). Φy (k, n) is simply esti-
mated using regressive smoothing [4],

Φy(k, n) = ayΦy(k, n− 1) + (1− ay)
[
y(k, n)yH(k, n)

]
,

(12)
and dx (k, n) is obtained using

dx (k, n) =
Φy (k, n) i0

φy1 − φo1
−

Φo (k, n) i0
φy1 − φo1

, (13)

where Φo(k, n) is the correlation matrix of the environment
noise. Since the outdoor noise is very complicated, it is diffi-
cult to estimate Φo(k, n) directly. Considering that we divide
the noise into quasi-stationary and transient components, the
correlation of the former, i.e. Φv(k, n), can be estimated us-
ing similar regressive smoothing as (12).

To estimate the whole noise correlation matrix, we use an
SPP-based estimator as

Φo(k, n) = p(k, n)Φv(k, n) + [1− p(k, n)] Φy(k, n). (14)

If the SPP is close to 1, the noise correlation matrix is decayed
to the stationary noise estimate to reduce speech distortion,
and if the SPP is close to 0, the noise estimates are roughly
equal to the observed noisy estimates. Therefore, if the SPP
is correct, this estimator will track the transient noise quickly
during speech absence. The following experimental results
will verify its performance.
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Fig. 1. Comparisons between PLDs and PSNRDs on the
468.74 Hz frequency bin

4. EXPERIMENTS AND EVALUATIONS

This section presents the experiments and performance eval-
uations. Two kinds of dual-microphone deployments are con-
sidered. One is a real mobile phone, i.e. Nokia N8, which
is embedded with two microphones. The other is a normal
mobile phone sticked with a pair of small DPA4060 micro-
phones. One is on the front-bottom, the other is on the rear-
top.

All experiment data are recorded in real environments.
The clean speech signals are recorded from two male talkers
in two quiet office rooms using DPAs and N8 respectively.
The noise signals are recorded in a large crowded cafeteria
using DPAs, and in a running bus using N8, respectively. All
recordings are sampled at 8 kHz. 0 dB, 5 dB, and 10 dB SNR
noisy signals are mixed in computer. We use Hanning win-
dow of 256 samples (32 ms) for STFT, with half overlap. The
minimum statistics (MS) approach [7] is used to estimate the
stationary noise in each channel.

We first examine the robustness of the PSNRD. Fig.1
shows an comparison. Note that the blue solid line refers to
the PSNRDs and the green dotted line refers to the PLDs.
The upper figure shows a DPA example with 10 dB cafeteria
noise, and the lower figure shows a N8 example with 10 dB
bus noise. The clean speech waveforms are also plotted to
show speech activities. One can find that during noise only
periods, the PLDs in the DPA case are almost negative, but
in the N8 case, they are about bigger than 0.2. Hence it is
difficult to select a correct threshold for PLD-based VAD. On
the contrary, the PSNRDs are quite robust. They are near 0
during noise only periods in both cases.

Then we examine the noise reduction performance. All
regression smoothing factors for estimating the correlation
matrixes are same, 0.85 in our experiments. According to
[10], same smoothing factors for both mixed signal and noise
signal lead to best performance of the MVDR. The thresh-
olds of the PSNRD for both dual-microphone deployments
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Fig. 2. From above to bottom: noisy signal, clean signal,
classical MVDR, and proposed MVDR. The 10dB DPA with
the cafeteria noise is used.

Table 1. Speech distortion indices (dB)
Bus noise Cafeteria noise

input SNR 10 5 0 10 5 0
class. MVDR -14.4 -12.8 -10.4 -11.1 -8.7 -5.7
prop. MVDR -12.9 -11.3 -8.5 -9.4 -6.6 -2.8

are same, i.e. ∆γmax = 0.2 and ∆γmin = 0. The first 10
frames are used for initializing the correlation matrixes. We
set L = 4 for consideration of inter-frame correlation. To
verify the effect of the proposed noise estimator, we use the
classical MVDR with the same parameters, where the noise
correlation matrix is estimated using regressive smoothing di-
rectly from the noise signals [4].

Fig.2 shows an example, where the 10 dB DPA case
with the cafeteria noise is used. We can find the proposed
MVDR performs slightly better than the classical MVDR in
noise only period. Hence it is not appropriate to use con-
stant smoothing in estimation the noise correlation matrix,
especially when the noise suddenly changes.

To evaluate the quantitative performance, we use the full-
band speech distortion indices and the full-band array gains
to evaluate the speech distortion and the SNR improvement,
respectively, see [4] for details. The lower the distortion in-
dex, the smaller distortion in the desired speech signals. The
higher the array gain, the more noise reduction. The quan-
titative results of the speech distortion indices and the array
gains are list in Table 1 and Table 2 respectively. Note that
the speech distortion indices are averaged during the speech
active parts.

We can see that the speech distortion of the proposed
MVDR are slightly higher than the classical MVDR, while
the array gain of the former is better. Additionally, the per-
formances in the bus noise are generally better than that in
the cafeteria noise, since the crowded cafeteria noise is more

Table 2. Array gains (dB)
Bus noise Cafeteria noise

input SNR 10 5 0 10 5 0
class. MVDR 8.1 10.4 11.3 5.8 7.6 8.9
prop. MVDR 16.0 18.2 16.1 7.9 8.3 9.8

challenge. The lower distortion of the classical MVDR is due
to the directly utilization of the noise signals. But the con-
stant smoothing influences its tracking capability of transient
noise, and the SPP-based smoothing is more appropriate.
Note that the distortion indices are somehow not very low
considering the MVDR criteria, even using the noise directly
as in the classical MVDR. That might because the MVDR
theory is based on stationary signal, and to estimate the cor-
relation matrix of non-stationary signals like speech is always
an approximation. However, the listening experiences are
quite pleasant and natural, without artificial effects as the
Wiener filter does.

5. CONCLUSIONS

This paper addresses the dual-microphone noise reduction
problem in mobile phone application. We propose to use the
posteriori SNR difference for speech presence probability
estimation, which is robust and independent of the micro-
phone’s sensitivity. Then we use the dual-channel MVDR
filter with the newly reported decomposition theory and
consider both the inter-channel and inter-microphone cor-
relations, where an SPP-based correlation matrix estimator is
introduced. The experimental results verify the robustness of
the PSNRD, and the SPP-based estimator is more appropriate
for MVDR filter in tracking transient noise. The proposed
MVDR filter can lead to high noise reduction with small
speech distortion.

6. RELATION TO PRIOR WORK

The work in this paper has focused on the dual-microphone
noise reduction problem in mobile phone application. The
work by Jeub, et al. [3] exploits the inter-microphone PLD
for noise PSD estimation. We proposed using the posteriori
SNR differences, which is more robust. For noise reduction,
we involved the MVDR filter with the newly reported decom-
position theory [4, 5]. The correlated MVDR researches all
suppose that the noise estimates are known. We proposes a
practical work and proposed an SPP-based correlation matrix
estimator.
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