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ABSTRACT

Voice conversion and speaker adaptation techniques present a threat
to current state-of-the-art speaker verification systems. To prevent
such spoofing attack and enhance the security of speaker verification
systems, the development of anti-spoofing techniques to distinguish
synthetic and human speech is necessary. In this study, we continue
the quest to discriminate synthetic and human speech. Motivated by
the facts that current analysis-synthesis techniques operate on frame
level and make the frame-by-frame independence assumption, we
proposed to adopt magnitude/phase modulation features to detect
synthetic speech from human speech. Modulation features derived
from magnitude/phase spectrum carry long-term temporal informa-
tion of speech, and may be able to detect temporal artifacts caused
by the frame-by-frame processing in the synthesis of speech signal.
From our synthetic speech detection results, the modulation fea-
tures provide complementary information to magnitude/phase fea-
tures. The best detection performance is obtained by fusing phase
modulation features and phase features, yielding an equal error rate
of 0.89%, which is significantly lower than the 1.25% of phase fea-
tures and 10.98% of MFCC features.

Index Terms— Anti-spoofing attack, synthetic detection, mod-
ulation, phase modulation, temporal feature

1. INTRODUCTION

The task of speaker verification is to make a binary decision to accept
or reject a claimed identity based on a speech sample. It has many
applications in telephone or network access control systems, such
as telephone banking and telephone credit cards [1]. The security
of speaker verification systems is threatened by two related speech
processing techniques, i.e. voice conversion [2] and speaker adapted
speech synthesis [3]. In voice conversion, the speech of a source
speaker is converted to sound like a target speaker, while speaker
adapted speech synthesis can mimic the voice of the target speaker
given any text. As both techniques are able to produce a voice to
sound like that uttered by the claimed speaker, they present a threat
to speaker verification systems.

The research on vulnerability of speaker verification systems
against voice conversion and HMM-based speech synthesis systems
has received a lot of attentions. In [4, 5, 6], the authors study the
vulnerability of speaker verification systems under spoofing attack
using synthetic speech from HMM-based speech synthesis system.
Adapted HMM-based speech synthesis system is studied in [7], and
voice conversion techniques in [8, 9, 10]. These studies on both
high quality and telephone quality speech confirm the vulnerability
of speaker verification systems. For this reason, the detection of syn-

thetic speech from human speech is an important task to enhance the
security of speaker verification systems.

To defend the spoofing attack using synthetic speech, a detec-
tion technique to distinguish between synthetic and human speech
is necessary. To respond to such a concern, features based on rel-
ative phase shift to classify HMM-based synthetic speech from hu-
man speech is proposed in [7]. In our previous study [11], motivated
by the facts that synthesis filter introduces artifacts in phase spec-
trum, features derived from cosine-normalized phase and modified
group delay function phase spectrum are proposed to discriminating
voice converted speech from human speech. Both studies [7, 11]
show that phase related features outperform magnitude-based fea-
tures (e.g. MFCC), confirming that the original phase information is
lost in the synthesized/converted speech.

However, all the above features are extracted at frame level, ig-
noring the distortions in the temporal structure of synthetic speech.
Current speech synthesis methods usually synthesize speech signal
frame-by-frame. Therefore, besides the short-term spectral distor-
tion produced by reconstruction, the frame-based operation also in-
troduces long-term temporal artifacts in the reconstructed speech
signal. Motivated by this fact, we propose to use modulation fea-
tures to capture speech variation cross frames for detecting synthetic
speech. Modulation features capture the long-term temporal infor-
mation of speech and have been shown to be effective in speech
recognition [12], speaker verification [13], and nonnative accent de-
tection [14]. In this paper, we apply the modulation features to the
synthetic speech detection task and investigate the interaction their
interactions with phase based features [11]. Unlike previous modu-
lation features [12, 13, 14] which are derived from magnitude spec-
trum only, we also study modulation features derived from phase
information of speech.

The paper is organized as follows: corpus design is introduced
in section 2. In section 3 and 4, short-term spectral feature extrac-
tion and long-term modulation feature extraction are discussed. The
score fusion which to combine feature and modulation feature in-
formation is presented in section 5. The experimental setups are
presented in section 6. We will conclude the paper in section 7.

2. CORPUS DESIGN

Due to the vulnerability of speaker verification systems against both
voice conversion and speaker adapted speech synthesis techniques,
we decided to develop an anti-spoofing technique to detect both syn-
thesized speech from adapted HMM-based speech synthesis system
and voice conversion system. The difference between HMM-based
speech synthesis and voice conversion is that: the input for voice
conversion is human speech, hence the converted speech can copy

7234978-1-4799-0356-6/13/$31.00 ©2013 IEEE ICASSP 2013



Fig. 1. The analysis-synthesis process to obtain synthetic speech

some human speech information from source speech, such as fun-
damental frequency and voiced and un-voiced information, while
HMM-based speech synthesis can not do this due to that the input is
text not speech signal. The common module of the two techniques
is that they both adopt the vocoder technique to reconstruct speech
signal from speech parameters. To this end, we design the synthetic
corpus only employing speech analysis-synthesis technique without
any further modification on the features.

Table 1. Statistics of the designed dataset

Number of utterances
Human speech Synthetic speech

Training set 4, 007 4, 007
Development set 3, 131 3, 131

Testing set 15, 000 15, 000

The Wall Street Journal corpora (WSJ0+WSJ1) are used to gen-
erate our synthetic speech detection corpus in this work. The orig-
inal waveforms are used as human speech. The synthetic speech is
obtained by employing the analysis-synthesis process as illustrated
in Fig. 1. The speech signal is first analyzed to extract representa-
tion parameters, such as fundamental frequency (F0) and spectral
parameters. These parameters are then passed directly to a syn-
thesis filter to reconstruct speech signal. The reconstructed speech
signal is used as synthetic speech. To produce good quality syn-
thetic speech, we employ STRAIGHT [15], a state-of-the-art speech
analysis-synthesis system, to first decompose speech into speech en-
velope, excitation with fundamental frequency (F0) and aperiodicity
envelope, and then reconstruct speech signal from these parameters.

We divided the corpora into three parts: training, development
and testing sets. The training and development data consist of 4, 007
utterances, and 3, 131 utterances from WSJ0, respectively. Another
15, 000 utterances from WSJ1 are used as testing data. For each orig-
inal waveform, a synthetic version is generated. As a result, there are
6, 262 utterances and 30, 000 utterances in the development and test-
ing sets, respectively, including human speech and synthetic speech.
The statistics of the dataset are presented in Table 1. We note that
there is no speaker overlap between the three datasets.

3. MAGNITUDE AND PHASE SPECTRUM

Given a speech signal, it can be processed by short-time Fourier anal-
ysis by assuming the signal to be quasi-stationary within a short pe-
riod (e.g. 25ms). The short-time Fourier transform of the speech
signal x(n) is presented as follows:

X(w) = |X(w)|ejϕ(w), (1)

where |X(w)| is the magnitude spectrum and ϕ(w) is the phase
spectrum. We note that X(w) has two parts: real part XR(w)
and imaginary part XI(w). The power spectrum is defined to be
|X(w)|2. Usually, features (e.g. MFCC) which contain magnitude
information can be derived from the power spectrum.

In order to include phase information, the modified group de-
lay function phase spectrum (MGDFPS), which is popular in speech
recognition [16, 17], is derived from the Fourier transform spectrum
X(w). The modified group delay function phase spectrum is defined
as follows:

τρ(w) =
XR(w)YR(w) + YI(w)XI(w)

|S(w)|2ρ , (2)

τρ,γ(w) =
τρ(w)

|τρ(w)| |τρ(w)|γ , (3)

where XR(w) and XI(w) are the real and imaginary parts of X(w),
respectively; YR(w) and YI(w) are the real and imaginary parts of
the Fourier transform spectrum of nx(n), respectively; |S(w)|2 is
the cepstrally smoothed power spectrum corresponding to X(w), ρ
and γ are two weighted variables and τρ,γ(w) is the MGDFPS. In
practice, |S(w)|2 is obtained by applying discrete cosine transform
(DCT) on the power spectrum and then pass the first 30 DCT coeffi-
cients to inverse discrete cosine transform (IDCT) to reconstruct the
trajectory.

3.1. Mel-frequency cepstral coefficients (MFCC)

The Mel-frequency cepstral coefficient (MFCC) is derived from the
magnitude spectrum |X(w)| in the following steps:

a) Employ the fast Fourier transform (FFT) to compute the spec-
trum X(w) of x(n).

b) Compute power spectrum |X(w)|2.

c) Compute filter-bank energies (FBE) by apply a Mel-frequency
filter bank to the power spectrum |X(w)|2.

d) Apply discrete cosine transform (DCT) to log-scale FBE to
compute the MFCC.

3.2. Modified group delay cepstral coefficients (MGDCC)

We can compute modified group delay cepstral coefficients (MGDCC)
from the modified group delay function phase spectrum as follows:

a) Adopt FFT to compute the spectrum X(w) and Y (w) of x(n)
and nx(n), respectively.

b) Compute the cepstrally smoothed power spectrum |S(w)|2 of
|X(w)|2.

c) Compute MGDFPS using Equation (2) and (3).

d) Obtain filter-bank energies (FBE) by apple a Mel-frequency
filter bank to MGDFPS.

e) Apply DCT to FBE to calculate the MGDCC.
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In [11], MGDCC has been adopted to detect synthetic speech
from human speech, which has achieved better performance than
MFCC. In this work, we will use MFCC and MGDCC as baseline
features. We note both MFCC and MGDCC are computed at frame
level without knowledge of the consecutive frames.

4. MAGNITUDE AND PHASE MODULATION FEATURE
EXTRACTION

Both MFCC and MGDCC are derived from power spectrogram and
modified group delay function phase spectrogram, respectively, in a
frame-by-frame fashion. As a result, they are not good at captur-
ing the correlation between frames, or the temporal characteristics
of speech feature trajectories. On the other hand, the frame-based
operation in speech analysis and synthesis process as illustrated in
Fig. 1 may introduce temporal artifacts. In order to consider the
frame dependency and capture the temporal artifacts in the synthetic
speech, we proposed to use modulation features to discriminate be-
tween synthetic speech and human speech. In this section, we will
describe the modulation spectrum extraction procedure and the fea-
ture extraction from the modulation spectrum.

��������	�


��������	�
���������
�������

�
��

�

��
�

�
�

�
��
�

	
�



�
��

�
�

�
�

��

��������	�


������

��	���
��������
������
������


�����
�����
��������
�� ��
���

��� ��
�������
�����
��

���
������������!���

��	���
�������������
��

����
����
������
������!���


������
�����
������
���

��	���
�������������
��

�"#

$%&

��	���
����

���
����

���
��

�������������
�������

$�'�������
��!���

(���
��!������!���
��������!�

)*��������'�
���*������������


Fig. 2. Illustration of modulation feature extraction from power
spectrogram.

The modulation feature extraction process is illustrated in Fig.
2 and it can be applied on both the power spectrum and modified
group delay function phase spectrum. In Fig. 2, a power spectrogram
is used for illustration. We first divide the spectrogram into overlap-
ping segments using a 50 frames window with 20 frames shift. Then
20 filter-bank coefficients are obtained from the spectrogram to form
a 20 × 50 matrix. After that, mean variance normalization (MVN)
is applied to the trajectory of each filter-bank to normalize the mean

and variance to zero and one, respectively. To compute modulation
spectrum from filter-bank energies, fast Fourier transform (FFT) is
applied to the 20 normalized trajectories. Every modulation spec-
tra in the spectrum is concatenated to make up a modulation super-
vector as the feature vector.

In this work, the dimensionality of each modulation spectra is 32
as we used a 64-point FFT. Thus, the dimensionality of the modula-
tion super-vector for each spectrum segment is 20× 32 = 640. Due
to the high dimensionality and high correlation between modulation
spectra of different filter bank trajectories, dimensionality reduction
is necessary. Thus, we apply principal component analysis (PCA)
on the modulation super-vectors, and 10 projected dimensions with
largest variances are used as the features for the synthetic detection
task. We call modulation features derived from power spectrogram
as magnitude modulation (MM), and features derived from modified
group delay function phase spectrogram as phase modulation (PM).
As illustrated in Fig. 2, the phase modulation can be extracted by
only changing the spectrogram before applying the Mel-scale filter
bank.

5. MODEL TRAINING AND SCORE FUSION

In this study, the Gaussian mixture model (GMM) is used to model
the feature distributions of the synthetic speech and human speech.
The synthetic or human decision is made based on log-likelihood
ratio:

L(O) = log p(O|λsynthetic)− log p(O|λhuman), (4)

where O is the feature vector sequence of a test speech signal,
λsynthetic and λhuman are GMM models for synthetic and hu-
man speech, respectively. In our implementation, for MFCC and
MGDCC features, 512 Gaussian components are adopted to model
the distribution; and 16 Gaussian components for MM and PM
features. As modulation features are extracted from spectrogram
segments whose window size is 50 frames with 20 frames shift, the
number of training modulation feature vectors is one-twentieth of
MFCC or MGDCC.

To benefit from both short-term spectral and long-term temporal
features, we utilize score fusion method.

Lcombine(O) = (1− α)LA(O) + αLB(O), (5)

where LA(O) and LB(O) are two log-likelihood score adopting two
different features, and α is the weighting coefficient to balance the
two scores. We will investigate the effect of the combination of the
above features.

6. EXPERIMENTS

In this study, MFCC and magnitude modulation features are com-
puted from magnitude spectrogram, and MGDCC and phase mod-
ulation features are computed from modified group delay function
phase spectrogram. The configurations for computing the magnitude
or modified group delay function phase spectrogram are presented in
Table 2. The weighting parameters ρ and γ for computing MGDFPS
in Equation (2) and (3) are decided using the development data. Dur-
ing testing, we fix ρ = 0.9 and γ = 1.8.

Both MFCC and MGDCC are using 36 dimension features, in-
cluding 12 dimension static features (no energy feature), and their
delta and delta-delta features. The dimensionality of the modulation
features is set to 10. Delta or delta-delta coefficients for modulation
features are not computed.
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Table 4. The detection EER with score fusion of different features

EER (%)
α MFCC+MGDCC MM+PM MFCC+MM MFCC+PM MGDCC+MM MGDCC+PM

0.0 10.98 13.71 10.98 10.98 1.25 1.25
0.1 1.64 13.38 9.73 9.83 1.20 1.21
0.2 1.12 13.33 8.94 8.73 1.16 1.17
0.3 1.03 13.51 8.51 7.85 1.10 1.13
0.4 1.02 13.93 8.72 7.30 1.02 1.07
0.5 1.07 14.54 9.43 7.17 0.98 1.00
0.6 1.14 15.43 10.73 7.42 0.99 0.92
0.7 1.19 16.39 12.60 8.18 1.08 0.89
0.8 1.21 17.43 14.79 9.47 1.41 1.00
0.9 1.23 18.29 17.09 11.33 2.97 1.63
1.0 1.25 19.29 19.29 13.71 19.29 13.71

Table 2. Parameter configurations for computing the spectrogram

Parameter configurations
Pre-emphasis filter H(z) = 1− 0.97z−1

Window function Hamming
Window size 400 samples (25ms)
Window shift 160 samples (10ms)

FFT order 512

Table 3. EER results of synthetic detection using different features

Feature EER (%)
MFCC 10.98

MGDCC 1.25
MM 19.29
PM 13.71

To evaluate the performance of proposed method, we adopt
equal error rate (EER) as the evaluation measure. In this study, the
EER is the error rate obtained when the percentage of natural speech
wrongly classified to synthetic speech is equal to the percentage of
synthetic speech wrongly classified to natural speech. The EER can
be obtained by having a threshold other than 0 for equation (4). The
lower value of EER, the better performance.

We first examine the performance of using different types of fea-
tures individually. The results are presented in Table 3. It is ob-
served that MGDCC produces much lower EER than MFCC, which
confirms that artifacts are introduced in the phase spectrum in the
converted speech [11]. This is also confirmed in long-term modula-
tion features. Phase modulation (PM) which is derived from modi-
fied group delay function phase spectrogram achieves better perfor-
mance than magnitude modulation (MM) which is computed from
magnitude spectrogram. It is also observed that both magnitude and
phase modulation features does not produces good classification per-
formance.

We then check the performance of the log-likelihood score fu-
sion of short-term spectral and long-term modulation features. The
results with varying weighting coefficient α are shown in Table 4.
For example, MFCC+MGDCC refers to the the log-likelihood score
fusion of MFCC and MGDCC features, and MFCC and MGDCC

correspond to A and B in equation (5), respectively. From the re-
sults, it is observed that MFCC+MM and MFCC+PM reduce the
EER of using only MFCC from 10.98 to 8.51 and 7.17, respectively.
EER of using only MGDCC is reduced from 1.25 to 0.98 and 0.89
by using MGDCC+MM and MGDCC+PM, respectively. These re-
sults show that MM and PM, which are long-term temporal features,
have complementary information to the short-term spectral features:
MFCC and MGDCC.

We can also find that even though both MFCC and MGDCC
obtain lower EER than MM and PM, the combination of MFCC and
MGDCC features gets higher EER than the combination of MGDCC
and MM or the combination of MGDCC and PM. This shows that
long-term temporal features have more complementary information
than MFCC feature to MGDCC, as both MFCC and MGDCC are
short-term spectral features and can not capture the temporal distor-
tions. The usefulness of modulation features, including magnitude
modulation feature and phase modulation feature, confirms that tem-
poral artifacts are introduced during the frame-by-frame operation in
speech analysis and synthesis process.

7. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed to combine short-term and long-term tem-
poral modulation features for discriminating synthetic speech and
human speech. The experiments results show that the fusion of long-
term modulation and short-term spectral features can achieve better
performance than using that only MFCC or MGDCC features. In
addition to artifacts in short-term spectral, this finding confirms that
artifacts in temporal structure are also introduced during the frame-
based operation in the analysis-synthesis process as illustrated in
Fig. 1. The proposed method can be adopted to detect synthetic
speech generated from both HMM-based speech synthesis systems
and voice conversion systems which are using vocoder techniques.

We note that the dimensionality reduction and feature selection
of the modulation features are important, and they affect the results
a lot. As the feature selection from modulation features is not the
slope of this paper, we only adopt the simple PCA technique to re-
duce dimensionality. In addition, although the use of filter-bank en-
ergies can reduce the dimensionality of modulation super-vector, the
filter-bank operation may result in the loss of some detail informa-
tion in modulation features. Therefore, we will investigate feature
selection and dimensionality reduction techniques to extract robust
modulation feature in future work.
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[2] Y. Stylianou, O. Cappé, and E. Moulines, “Continuous prob-
abilistic transform for voice conversion,” Speech and Audio
Processing, IEEE Transactions on, vol. 6, no. 2, pp. 131–142,
1998.

[3] J. Yamagishi, T. Kobayashi, Y. Nakano, K. Ogata, and J. Iso-
gai, “Analysis of speaker adaptation algorithms for hmm-based
speech synthesis and a constrained smaplr adaptation algo-
rithm,” Audio, Speech, and Language Processing, IEEE Trans-
actions on, vol. 17, no. 1, pp. 66–83, 2009.

[4] T. Masuko, T. Hitotsumatsu, K. Tokuda, and T. Kobayashi,
“On the security of hmm-based speaker verification systems
against imposture using synthetic speech,” in Proceedings of
the European Conference on Speech Communication and Tech-
nology, 1999, vol. 3, pp. 1223–1226.

[5] T. Masuko, K. Tokuda, and T. Kobayashi, “Imposture using
synthetic speech against speaker verification based on spec-
trum and pitch,” in Proc. ICSLP, 2000, vol. 2, pp. 302–305.

[6] T. Satoh, T. Masuko, T. Kobayashi, and K. Tokuda, “A robust
speaker verification system against imposture using an hmm-
based speech synthesis system,” in Proc. Eurospeech, 2001.

[7] P.L. De Leon, M. Pucher, J. Yamagishi, I. Hernaez, and
I. Saratxaga, “Evaluation of speaker verification security and
detection of hmm-based synthetic speech,” Audio, Speech, and
Language Processing, IEEE Transactions on, vol. 20, no. 8,
pp. 2280–2290, 2012.

[8] Q. Jin, A.R. Toth, A.W. Black, and T. Schultz, “Is voice trans-
formation a threat to speaker identification?,” in ICASSP 2008.
IEEE, 2008, pp. 4845–4848.

[9] Z. Wu, T. Kinnunen, E.S. Chng, H. Li, and E. Ambikairajah,
“A study on spoofing attack in state-of-the-art speaker verifica-
tion: the telephone speech case,” in Asia-Pacific Signal Infor-
mation Processing Association Annual Summit and Conference
(APSIPA ASC), 2012, 2012.

[10] T. Kinnunen, Z.Z. Wu, K.A. Lee, F. Sedlak, E.S. Chng,
and H. Li, “Vulnerability of speaker verification systems
against voice conversion spoofing attacks: The case of tele-
phone speech,” in Acoustics, Speech and Signal Process-
ing (ICASSP), 2012 IEEE International Conference on. IEEE,
2012, pp. 4401–4404.

[11] Z. Wu, E.S. Chng, and H. Li, “Detecting converted speech and
natural speech for anti-spoofing attack in speaker recognition,”
in Interspeech, 2012.

[12] B. Kinsgbury, N. Morgan, and S. Greenberg, “Robust speech
recognition using the modulation spectrogram,” Speech Com-
munication, vol. 25, pp. 117–132, 1998.

[13] K.A. Lee T. Kinnunen and H. Li, “Dimension reduction of the
modulation spectrogram for speaker verification,” in Odyssey:
The Speaker and Language Recognition Workshop, 2008.

[14] S. Sam, X. Xiao, L. Besacier, E. Castelli, H. Li, and E. S. Chng,
“Speech modulation features for robust nonnative speech ac-
cent detection,” in Interspeech, 2011.

[15] H. Kawahara, I. Masuda-Katsuse, and A. de Cheveigné, “Re-
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