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ABSTRACT

A voice activity detector (VAD) plays a vital role in robust speaker
verification, where energy VAD is most commonly used. Energy
VAD works well in noise-free conditions but deteriorates in noisy
conditions. One way to tackle this is to introduce speech enhance-
ment preprocessing. We study an alternative, likelihood ratio based
VAD that trains speech and nonspeech models on an utterance-by-
utterance basis from mel-frequency cepstral coefficients (MFCCs).
The training labels are obtained from enhanced energy VAD. As the
speech and nonspeech models are re-trained for each utterance, min-
imum assumptions of the background noise are made. According
to both VAD error analysis and speaker verification results utilizing
state-of-the-art i-vector system, the proposed method outperforms
energy VAD variants by a wide margin. We provide open-source
implementation of the method.

Index Terms— Voice activity detection, speaker verification

1. INTRODUCTION

Voice activity detection (VAD) is the task of locating speech seg-
ments from an utterance and it plays a crucial role in any speech
processing system. The standard VADs such as the g729 [1], ETSI
advanced front-end (AFE) [2] and statistical model VADs [3], have
been designed with telecommunication and automatic speech recog-
nition (ASR) desiderata in mind, namely, low complexity and real-
time operation. But there are also applications that do not require
real-time operation, such as speaker diarization and recognition for
screening, indexing or forensic use cases. In these applications, it
would be beneficial to utilize the full recording for noise modeling
and VAD threshold adaptation. Here we focus on text-independent
speaker verification [4].

Energy-based VAD [5, 4] is by far the most popular VAD in
speaker verification, possibly due to its simplicity. It computes
the energy of each short-term frame and assumes that the low and
high energy frames, respectively, correspond to nonspeech and
speech. The energy threshold is usually adjusted on an utterance-
by-utterance basis. For instance, the threshold can be made relative
to maximum or average energy of the utterance [5, 4, 6]. It is also
common to fit a 2- or 3-component Gaussian mixture model (GMM)
to the energy distribution and adjust the threshold according to the
GMM parameters (e.g. cross-over point of the two Gaussians) [7, 8].
This may involve iterative re-training of the energy GMM and the
thresholds [9].

A well-known shortcoming of the energy-based VADs are their
sensitivity to additive (environmental) noise [10, 6]. Some form
of speech enhancement pre-processing seems necessary under low
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signal-to-noise ratios (SNRs). According to [10], energy VAD with
spectral subtraction enhancement can outperform more advanced
statistical model VAD [3]. Alternative ways to tackle noise include
alternative features such as periodicity [11] or phase [12].

Beyond the simple energy VAD, at the other extreme are meth-
ods that adopt an off-the-shelf phone recognizer or trainable models
for VAD [13, 14, 15, 16, 12]. For instance, phone posterior prob-
abilities can be merged and combined with energy measures [13].
Such VADs are generally complex. Their pre-trained acoustic mod-
els may also not generalize well to unseen types of channels or en-
vironments. In [6], phone recognizer VAD, similar to energy VAD,
was found sensitive to additive noise degradation.

We propose a practical VAD that does not rely on pre-trained
acoustic models but is trained only from the recording at hand. This
is achieved via an initial energy VAD to label a small number of
“reliable” training vectors for that utterance. Two GMMs, one for
speech and one for nonspeech, are trained and a likelihood ratio de-
tector is used for labeling all the frames as speech or nonspeech. The
proposed VAD is designed with the following criteria in mind:

• Unsupervised: It does not require hand-labeled training sets.
• Self-adaptive: It does not require pre-trained speech/nonspeech

models but adapts itself to a given utterance. It makes no
strong assumptions of the type or level of noise.

• Practical: It is directly applicable to both telephone and in-
terview data in recent NIST SRE data. It does not use costly
Viterbi decoding or iterative re-training procedures.

Relation to previous work: Closest similar works to ours are VADs
described in [17, 18, 19], which also use a preliminary VAD to obtain
training class labels. Unlike [17, 18] that use maximum a posteriori
(MAP) training, we use maximum likelihood training (ML) as [19],
but without iterative Viterbi segmentation and re-training to speed
up processing. Further speed-up is achieved by use of codebooks,
viewed as constrained GMMs [20]. As part of our preparation to the
latest NIST SRE 2012 evaluation with I4U coalition [21], another
novelty is a systematic study of the effect of the VAD control param-
eters with a special focus on additive noise degradation with use of
multiple enrollment utterances per speaker. The speaker verification
experiments are reported using a state-of-the-art i-vector system on
the I4U dataset.

2. VOICE ACTIVITY DETECTORS

2.1. Simple Energy VAD

For completeness, we describe here the adaptive energy VAD. Let
xt[n] denote the nth sample of the tth speech frame in an utterance.
We first compute the log-energy of each frame as,

Et = 10 log10

(

1

N − 1

N
∑

n=1

(xt[n]− µt)
2 + ǫ

)

, (1)
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where µt = (1/N)
∑N

n=1 x[n] is the sample mean of the frame, N
is the frame size and ǫ = 10−16 is an arbitrary constant to avoid log
of zero. We find the maximum energy Emax = maxt=1,...,T {Et}
over all the T frames of the utterance. The VAD decision is sim-
ple threshold comparison adjusted according to this maximum level.
Additionally, a minimum energy constraint is used to avoid utter-
ances with low energy being falsely tagged as speech. Thus, the
energy VAD rule for speech presence is (Et > Emax − θmain) ∧
(Et > θmin), where θmain and θmin, respectively, denote pre-set pri-
mary and minimum energy thresholds. These were set to θmain = 30
dB and θmin = −55 dB [4] when optimizing the spectral subtraction
parameters (Section 4).

2.2. Energy VAD with Spectral Subtraction

For high signal-to-noise ratios (SNRs), the energy VAD works rea-
sonably well but in low SNRs it tends to mark most frames as speech.
One strategy to remedy this is to use a plug-in speech enhancement
method, intended for increasing SNR, prior to the above-described
energy VAD. The spectral subtraction method is based on MATLAB
implemention specsub in Voicebox1. Let |X|2 and |N̂ |2, respec-
tively, denote the powers of noisy speech and estimated noise in a
particular time-frequency FFT bin. Spectral subtraction is achieved
by multiplying noisy magnitude |X| by a gain factor g whose gen-
eral form is [22],

g = max

{(

1−

(

α
|N̂ |2

|X|2

)γ/2)e/γ

,min

(

gh,

(

β
|N̂ |2

|X|2

)e/2)}

,

where α is an oversubtraction factor, γ determines the subtraction
domain, e is gain exponent, gh is maximum gain for noise floor and
β determines maximum noise attenuation in the power domain. The
gain-multiplied magnitude is combined with phase of the noisy sig-
nal followed by overlap-and-add signal reconstruction.

We fix gh = 1.00 and β = 0.01 and focus on (1) subtraction
domain, (2) amount of oversubtraction and (3) noise estimator. Re-
garding the subtraction domain, magnitude domain subtraction is
obtained by choosing (γ, e) = (1, 1), power domain spectral sub-
traction by (γ, e) = (2, 1) and Wiener filter by (γ, e) = (2, 2). Re-
garding the amount of subtraction, α varies linearly from α = αmax

for a frame signal-to-noise ratio (SNR) of -5 dB down to α = 1 for
SNR = 20 dB; we treat the maximum oversubtraction factor, αmax,
as a control parameter. Regarding noise estimator, we consider two-
well known alternatives, minimum mean square error (MMSE) [23]
and minimum statistics (MS) [24] noise trackers.

2.3. Proposed Self-Adaptive VAD

The proposed method is outlined in the pseudocode. First, MFCCs
are extracted from the original signal. The signal is then enhanced
with spectral subtraction whose purpose is to merely increase the
energy contrast between speech and nonspeech without caring of
spectral subtraction artefacts. Therefore, relatively aggressive over-
subtraction is used [10]. Following this, we sort the energy values
and find a fixed percentage of the lowest and highest energy frames
(for instance, 10 % of all frames) assumed to correspond, respec-
tively, to reliably-labeled nonspeech and speech frames. Speech and
nonspeech models are then trained using the MFCCs correspond-
ing to these frame indices. Finally, all the frames are labeled using
the trained models, with an additional minimum-energy constraint.

1http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/
voicebox.html (URL valid March-2013).

Inputs: Speech signal s[n], frame length (L) and hop (H)
Outputs: Binary VAD labels VAD[t], t = 1, 2, . . . , T

1. // Extract MFCCs from the noisy signal
X ← ExtractMFCC(s, L,H,MFCCParams);

2. // Denoise the speech signal
sclean ← Specsub(s,SpecsubParams);

3. // Compute frame energies of the enhanced signal, Eq. (1)
E ← ComputeEnergy(sclean, L,H);

4. // Find indices of low/high energy frames (fixed percentage)
[ilow , ihigh]← FindLowestAndHighest(E,percentage);

5. // Train speech and nonspeech models from the frame subsets
λspeech ← Train({xt ∈ X|t ∈ ihigh},ModelParams);
λnonspeech ← Train({xt ∈ X|t ∈ ilow},ModelParams);

6. // For all frames, pick the more likely hypothesis
VAD[t]← {log p(xt|λ

speech) ≥ log p(xt|λ
nonspeech)} ∧

Et ≥ θmin; // With min-energy constraint

Note that all MFCC processing uses features of the original (noisy)
signal rather than the enhanced one that contains spectral subtraction
artefacts.

Both the speech and nonspeech models are GMMs of the form
p(x|λ) =

∑K
k=1 PkN (x|µk,Σk) with mixing weights Pk, mean

vectors µk and covariance matrices Σk. Even though different
number of Gaussians can be used for speech and nonspeech mod-
els [18, 19], we use the same number for simplicity. Two chal-
lenges in maximum likelihood training are small amount of data
and zero frames found in NIST corpora causing duplicated vec-
tors and numerical problems. To avoid duplicates, we add ran-
dom Gaussian noise with small amplitude (10−9) to the signal
as a preprocessing step, similar to dithering option in HTK. Fur-
ther, since our goal is to retain low complexity, we use k-means
instead of expectation maximization (EM). As discussed in [20,
p. 443-444], k-means can be viewed as a limit case of EM with
identical covariance matrices Σk = ǫI where ǫ → 0. Assum-
ing equal speech/nonspeech priors and misclassification costs, the
log-likelihood ratio test for speech presence for vector xt, i.e.
p(xt|λ

speech) ≥ log p(xt|λ
nonspeech), reduces to the nearest-

neighbor rule, mink ‖xt −µ
speech
k ‖2 ≤ mink ‖xt−µ

nonspeech
k ‖2,

where µ
(.)
k are the codevectors obtained using k-means.

3. EXPERIMENTAL SETUP

The experiments are divided into two parts. First, VAD parameters
are optimized to minimize average frame labeling error. The opti-
mized VAD is then integrated into a speaker verification system.

3.1. VAD development set

To evaluate VAD accuracy, we adopt a simulated additive noise pro-
tocol. To this end, we utilize utterances in the development set
of the NIST 2010 speaker recognition evaluation (SRE) campaign.
This dataset, provided by NIST, contains 2-channel recordings from
18 interview and 36 telephone recordings with supplementary au-
tomatic speech recognition (ASR) transcripts. Here we use only
the telephone segments due to cross-talk and subsequently incor-
rect VAD in the interview data. Both sides of the telephone con-
versations, leading to 36×2 = 72 unique recordings, are used. They
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Fig. 1: Energy VAD with spectral subtraction (MMSE noise tracker).

are downgraded with controlled signal-to-noise ratios (SNRs) rang-
ing from [original, 20dB, 15dB, 10dB, 6dB, 0dB] using g729 au-
dio weighting filter for level determination. We use the open-source
Filtering and Noise Adding Tool (FaNT)2. The noise files were se-
lected from FreeSound3 and contain mostly device sounds found at
home environments (e.g. airconditioner and washing machine). For
a given clean speech file, the noise file was randomly selected and
the noise section in the file was also randomized.

Table 1: Energy VAD (average VAD error, %) with and without
spectral subtraction in magnitude (Mag.), power (Pow.) or Wiener
domain. Max. oversubtraction factor is α = 10. Minstat.=min.
statistics and MMSE=min. mean square error noise estimator.

SNR Baseline Minstat. MMSE
(dB) (no specsub.) Mag. Pow. Wiener Mag. Pow. Wiener

Orig. 21.90 22.35 22.11 21.54 23.08 22.47 21.98
20 44.33 25.79 25.52 25.32 26.02 25.52 25.39
15 50.37 27.68 27.36 27.25 28.00 27.53 27.32
10 54.30 31.70 31.86 30.61 33.34 32.38 30.61
6 54.85 36.07 35.05 31.74 36.27 35.45 31.76
0 55.63 45.77 45.17 34.92 46.78 45.66 35.35

The accuracy of a VAD is evaluated by comparing the predicted
VAD labels with a clean reference segmentation obtained from the
ASR transcripts provided by NIST. Let ŷt(n) ∈ {0, 1} and yt(n) ∈
{0, 1}, respectively, denote the predicted and ground truth VAD la-
bel of frame t in file n, and let T (n) denote the total number of
frames in utterance n. Our primary metric for VAD tuning is aver-
age total error rate,

E =
1

Nutt

Nutt
∑

n=1

1

T (n)

T (n)
∑

t=1

I
{

ŷt(n) 6= yt(n)
}

, (2)

where I{·} is an indicator function and Nutt = 72 is the number
of utterances. Additionally, average miss and false alarm rates, cor-
responding to assertions {ŷt(n) = 0 ∧ yt(n) = 1} and {ŷt(n) =
1 ∧ yt(n) = 0}, respectively, are reported for selected cases.

3.2. Speaker verification experiments

As part of the pre-evaluation activity for the NIST SRE 2012, the I4U
coalition developed a speaker verification devset based on previous

2http://dnt.kr.hsnr.de/download.html
3http://www.freesound.org

years’ NIST corpora which is adopted here. The I4U training and
test data was drawn from SRE 2006, 2008 and 2010 corpora includ-
ing both telephone and microphone data. In addition to the original
recordings, two noisy versions (15 dB and 6 dB) of each utterance
were generated using FaNT where the noises included similar device
sounds as the VAD devset but also additional (unintelligible) crowd
noises. A different set of noise files from VAD optimization is used
for the speaker verification part. More details are given in [21].

A state-of-the-art probabilistic linear discriminant analysis
(PLDA) [25] classifier with an i-vector extractor [26] and length
normalization [27] is used. 18 MFCCs are extracted, followed
by RASTA filter, delta and double deltas (54 dimensions), frame
dropping using one of the compared VADs, and global cepstral
mean/variance normalization (CMVN). Gender-dependent universal
background models (UBMs) with 1024 diagonal covariance Gaus-
sians are trained from NIST 04, 05, 06 and 08 data. The i-vector
extractor (T-matrix) with 600 dimensions is trained (5 iterations)
using the same corpora plus Fisher and Switchboard. These are also
used for PLDA training with speaker and channel subspace dimen-
sions of 200 and 0, respectively. The original utterances without
added noise are used for UBM and T-matrix training, but both the
PLDA training and the enrollment data contain original and noisy
utterances. A single, averaged i-vector is used as the enrollment
representation. To evaluate accuracy, we report both equal error
rate (EER) and normalized MinDCF following NIST 2010 speaker
recognition evaluation plan (Ptar = 0.001, Cmiss = Cfa = 1).

4. RESULTS: VAD OPTIMIZATION

We first optimize the denoising parameters in the energy VAD. The
first parameters of interest are the maximum oversubtraction factor
and spectral subtraction domain (magnitude, power or Wiener). The
results, using minimum mean square error (MMSE) noise tracker
of [23], are given in Fig. 1. As expected, accuracy drops dramat-
ically with decreasing SNR. Regarding oversubtraction, aggressive
oversubtraction is helpful as noted earlier [10]. Stabilization occurs
roughly for α ≥ 5 for magnitude subtraction and α ≥ 10 for power
subtraction and Wiener filter across all SNRs. Regarding the sub-
traction domain, the results are similar for high SNRs but for SNRs
less than 15 dB, Wiener filter clearly wins.

We next study the influence of the noise tracker. We fix max-
imum oversubtraction factor to α = 10 and compare the MMSE
[23] and minimum statistics [24] methods in Table 1. The results for
baseline energy VAD without spectral subtraction are also displayed.
Clearly, any enhancement yields remarkable improvement. Regard-
ing noise estimator, minimum statistic method wins in most cases,
but the difference is small. This was further confirmed by visually
comparing the estimated noise spectra which appeared very similar.
The MMSE tracker implementation executes faster and is fixed the
rest of the experiments.

We now turn attention to the proposed VAD, where the opti-
mized spectral subtractor (Wiener domain, MMSE tracker, α = 10)
is used for training vector labeling. 12 MFCCs (including C0) with-
out any normalizations or deltas are extracted. 10 % of the frames
are used for training speech and nonspeech models with K = 16
codevectors each. Table 2 shows the results for energy VAD without
(column 1) and with (column 2) spectral subtraction. The proposed
self-adaptive VAD is reported using energy VAD without (column 3)
and with (column 4) enhancement of energy. The last column gives
the result when both the energy and the MFCCs are extracted from
Wiener-filtered signal. We observe the following from Table 2:
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Table 2: Energy VAD and proposed VAD (codebook K = 16) with
and without spectral subtraction (SS), average VAD errors (%). In
the last column the MFCCs are also extracted from denoised speech.

SNR Energy VAD Self-adaptive VAD
(dB) No SS. SS. No SS. SS. SS. (energy

(energy) & MFCCs)

Orig. 21.90 21.98 10.90 12.46 12.54
20 44.33 25.39 26.63 23.15 22.29
15 50.37 27.32 30.21 25.24 25.61
10 54.30 30.61 36.01 28.21 28.59
6 54.85 31.76 40.05 30.00 30.32
0 55.63 35.35 45.75 34.04 34.49

• Column 1 vs 3: proposed VAD systematically outperforms
energy VAD when spectral subtraction is turned off.

• Column 3 vs 4: spectral subtraction for energy cleaning fur-
ther improves accuracy of the proposed VAD.

• Column 2 vs. 4: when spectral subtraction is included, there
is a slight yet systematic advantage of using the proposed
VAD. The same energy VAD is used in both, so this addi-
tional gain is due to the trained MFCC-based VAD.

• Column 4 vs 5: there is not much difference whether the
MFCCs are extracted from the original or enhanced signal.

To sum up, the proposed VAD outperforms energy VAD systemati-
cally across all SNRs. For the rest of the experiments, we use spec-
tral subtraction to enhance energy only. As a final analysis, Fig. 2
displays separately the average miss and false alarm rates for vary-
ing number of codevectors and percentage of training frames in an
utterance (20 dB and 0 dB). Comparing the scales of the two graphs,
majority of the VAD errors come from missed speech. Increasing the
codebook size decreases miss rate and slightly increases false alarm
rate. Regarding the amount of training vectors, larger training set
reduces miss rate and increases false alarm rate.

The miss rate should be interpreted with caution because of er-
roneous ASR transcripts used as reference; a large proportion of
“missed speech” likely originates from speech-internal pauses con-
sidered as speech according to ASR transcript but which, for speaker
verification, should be considered nonspeech. Considering noisy ut-
terances, we would like to mainly retain low false alarm rate without
removing too many speech frames; we fix the amount of training
data to 10 % with codebook size K = 16 for the speaker verifi-
cation part. The minimum energy threshold (same for all the three
VADs) was re-adjusted to θmin = −75 dB and main threshold of
energy VAD to θmain = 45 dB following [5]. These selections were
confirmed by listening and viewing spectrograms of the VAD devset.
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%, 20 %, 30 %) and codebook size (2,4,. . . ,256).

Table 3: Speaker verification accuracy (EER %) on the female trials
of the I4U devset. En. = energy VAD, SS-En. = energy VAD with
spectral subtraction, Prop. = Proposed self-adaptive VAD.

Test tel phn mic phn mic int
SNR En. SS-En. Prop. En. SS-En. Prop. En. SS-En. Prop.

Orig 1.59 0.94 0.85 7.64 3.10 1.82 0.87 0.35 0.48
15dB 4.89 2.13 0.94 8.07 4.57 2.25 1.16 0.69 0.94
6dB 7.51 4.47 1.45 9.18 6.12 3.69 3.20 2.26 1.77
All 4.66 2.51 1.08 8.29 4.50 2.58 1.74 1.10 1.06

Table 4: Same as Table 3 but for MinDCF.

Test tel phn mic phn mic int
SNR En. SS-En. Prop. En. SS-En. Prop. En. SS-En. Prop.

Orig 0.37 0.20 0.19 0.64 0.33 0.27 0.24 0.10 0.09
15dB 0.63 0.36 0.20 0.70 0.42 0.29 0.28 0.14 0.10
6dB 0.81 0.62 0.26 0.91 0.69 0.38 0.59 0.36 0.20
All 0.60 0.39 0.21 0.75 0.48 0.31 0.37 0.20 0.13

5. RESULTS: SPEAKER VERIFICATION

The speaker verification results (female trials only), in terms of equal
error rate (EER) and MinDCF are shown in Tables 3 and 4. Since we
use multi-condition training including multiple SNRs and channel
types and a variable number of training segments per speaker, we
report the results considering the test file SNR and data type. The
latter includes phone conversations with telephone channel (tel-phn)
and microphone channel (mic-phn), as well as interview scenario
with microphone channel (mic-int). The results for pooled trials
across all test SNRs are are given in the last rows of each table.

As expected, accuracy drops with decreasing SNR. Energy VAD
without spectral subtraction yields highest error rates as expected.
Including this simple enhancement yields a considerable boost. The
proposed self-adaptive VAD further improves on this by a large mar-
gin. In the case of interview data EER for the original and 15 dB test,
energy VAD with spectral subtraction slightly outperforms the pro-
posed VAD. Regarding the noisiest 6 dB case and MinDCF, the pro-
posed VAD wins again. Our cross-talk cancellation strategy, which
was implemented as logical operation (interviewee AND NOT inter-
viewer) [5] may be suboptimal. In summary, the overall results in-
dicate that the proposed VAD can indeed handle data with different
channel type and SNR without breaking down; it experiences much
smaller relative degradation with decreasing SNR in comparison to
the energy VAD variants.

6. CONCLUSIONS AND POINTER TO PROGRAM CODE

We studied a simple VAD for speaker verification with promising
results over spectral subtraction VAD which is considered one of
the high-performance VADs in speaker verification [10, 9]. Con-
sistent behavior on telephone, microphone data, clean and noisy
data was observed. Results should be further compared to simi-
lar utterance-by-utterance adaptive VADs (e.g. [19]). The prob-
lems of threshold selection to maximize speaker verification accu-
racy and detect nonspeech-only utterances deserve attention as well.
A MATLAB implementation of our VAD is available at http:
//cs.uef.fi/pages/tkinnu/VQVAD/VQVAD.zip.
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[14] N. Brümmer, L. Burget, P. Kenny, P. Matejka, E. Villiers de,
M. Karafiat, M. Kockmann, O. Glembek, O. Plchot, D. Baum,
and M. Senoussauoi, “ABC system description for NIST SRE
2010,” in Proc. NIST 2010 Speaker Recognition Evaluation,
Brno Univ. Tech., 2010, pp. 1–20.
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