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ABSTRACT

A dereverberation method based on generalized spectral subtraction
(GSS) using a multi-channel least mean square (MCLMS) approach
achieved significantly improved results on speech recognition ex-
periments compared with conventional methods. In this study, we
employ this method for hands-free speaker identification. The GSS-
based dereverberation method using clean speech models degrades
speaker identification performance, although it is very effective for
speech recognition. One reason may be that the GSS-based derever-
beration method causes distortion such as distortion characteristics
between clean speech and dereverberant speech. In this study, we
address this problem by training speaker models using dereverber-
ant speech, which is obtained by suppressing reverberation from ar-
bitrary artificial reverberant speech. We also propose a method that
combines various compensation parameter sets to improve speaker
identification and provide an efficient computational method. The
speaker identification experiment was performed on large-scale far-
field speech, with reverberant environments different to the training
environments. The proposed method achieved a relative error reduc-
tion of 87.5%, compared with conventional cepstral mean normal-
ization with beamforming using clean speech models, and 44.8%
compared with reverberant speech models.

Index Terms— speaker identification, hands-free, dereverbera-
tion, spectral subtraction, multi-channel LMS

1. INTRODUCTION

Because of the existence of reverberation in hands-free environ-
ments, hands-free speaker identification performance is drastically
degraded. Most dereverberation techniques are employed through
signal processing to compensate an input signal. Beamforming is
one of the simplest and most robust means of spatial filtering to
suppress reverberation and background noise, which can discrimi-
nate between signals based on the physical locations of the signal
sources [1]. The other general approach is cepstral mean normaliza-
tion (CMN) [2], which has been extensively examined as a simple
and effective way of reducing reverberation with normalized cep-
stral features. Unfortunately, the impulse response of reverberation
in a hands-free environment usually has a much longer duration
than the analysis window for short-term spectral analysis. There-
fore, the performance of dereverberation is not completely effective
when using CMN in this environment. A reverberation compensa-
tion method for speaker identification using spectral subtraction, in
which late reverberation is treated as additive noise, was proposed
in [3]. However, the drawback of this approach is that the optimum
parameters for spectral subtraction are empirically estimated from a
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development dataset, and the late reverberation cannot be subtracted
correctly as it is not modeled precisely.

Previously, Wang et al. presented a hands-free speech recog-
nition method based on generalized spectral subtraction (GSS) em-
ploying the multi-channel least mean square (MCLMS) algorithm
[4]. They treated late reverberation as additive noise, and a noise
reduction technique based on GSS [5] was proposed to estimate the
spectrum of the clean speech using an estimated spectrum from the
impulse response. To estimate the spectra of the impulse responses,
they extended the variable step-size unconstrained MCLMS algo-
rithm for transforming the impulse responses in the time domain [6]
to the frequency domain. The early reverberation was normalized
using CMN.

GSS-based dereverberation has been used in the speech recog-
nition field in a previous study [4]. However, the effect of GSS-
based dereverberation on hands-free speaker identification is still
unknown. A preliminary experiment on speaker identification using
the GSS-based method was performed. The results showed that the
GSS-based dereverberation using clean speech models degraded the
speaker identification performance, although it was very effective
for speech recognition. One reason for this may be that the GSS-
based dereverberation method causes distortion like the speaker ’ s
distortion characteristics between clean and dereverberant speech.
We addressed this problem by training speaker models using dere-
verberant speech obtained by suppressing early and late reverbera-
tion from arbitrary artificial reverberant speech. The speaker * s dis-
tortion characteristics in training and test data were similar, so the
GSS-based dereverberation method was expected to be effective for
speaker identification.

For GSS, it is difficult to determine the optimum compensation
parameters (exponent parameter, noise over estimation factor etc.)
under various environmental conditions. In this study, we combined
multiple speaker identification results obtained using different com-
pensation parameter sets, which meant that special tuning of GSS
was not necessary for our proposed method. However, the compu-
tational cost increased linearly according to the number of compen-
sation parameter sets. To reduce the computational time, only the
speaker models with top N-best likelihood outcomes are rescored
and combined to determine the target speaker.

2. HANDS-FREE SPEAKER IDENTIFICATION SYSTEM
EMPLOYING THE DEREVERBERATION METHOD

To mitigate the speaker ~ s distortion characteristics caused by dere-
verberation in the test stage, dereverberant speech obtained by sup-
pressing early and late reverberation from arbitrary artificial rever-
berant speech was used to train the speaker models. We assumed
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Fig. 1. Schematic diagram of the hands-free speaker identification
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that the speaker s distortion characteristics in training and test data
were similar. By employing dereverberation in both the training and
test stages, the transmission characteristics can be removed and the
relative speaker’ s characteristics can remain maximized. Compared
with speaker models trained with reverberant speech, our method
was expected to have a better speaker identification performance. In
previous research, GMMs trained with reverberant speech have been
used in hands-free speaker identification. However, the mismatch of
hands-free environments between the training and test conditions has
still not been addressed. Furthermore, when late reverberations con-
tain large energy, the performance of speaker identification cannot
be improved even with GMMs trained with a matched reverberant
condition. It means that the GMMs cannot handle severe late rever-
berations precisely.

In this study, a hands-free speaker identification system employ-
ing the dereverberation method was proposed. The schematic di-
agram of our proposed method is shown in Fig 1. In the training
stage, clean speech was convoluted by arbitrary impulse responses
to create artificial reverberant speech, which reduced the experimen-
tal cost because real reverberant speech was not necessary. A GSS-
based dereverberation, which will be introduced in Section 3, was
then performed to suppress both the early and late reverberation. Fi-
nally, the dereverberant speech was used to train the speaker models.
In the test stage, the reverberation of multi-channel distorted speech
! was removed by the GSS-based dereverberation method, and the
dereverberant speech was then used to perform hands-free speaker
identification.

3. OUTLINE OF DEREVERBERATION

3.1. Dereverberation Based on GSS

If speech s]t] is corrupted by convolutional noise h[t] , the observed
speech z[t] becomes:
x[t] = h[t] = s[t]. (1)
If the length of the impulse response is much smaller than the
size T of the analysis window used for short-time Fourier trans-
forms (STFT), the STFT of the distorted speech equals that of the
clean speech multiplied by the STFT of the impulse response hl[t].
However, if the length of the impulse response is much greater than
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the analysis window size, the STFT of the distorted speech is usually
approximated by:

X(f,w) = S(f,w)*H(w)
D-1
= S(f,w)H(O,w)+ > S(f —d,w)H(d,w), @
d=1

where f is the frame index, H(w) is the STFT of the impulse re-
sponse, S(f,w) is the STFT of clean speech s, and H(d, w) denotes
the part of H (w) corresponding to the frame delay d. That is, with a
long impulse response, the channel distortion is no longer of a mul-
tiplicative nature in the linear spectral domain, but is convolutional.

In [4], Wang et al. proposed a dereverberation method based on
generalized spectral subtraction to estimate the STFT of the clean

speech S (f,w) based on Eq. (2). The spectral subtraction is used to
suppress the late reverberation, and the early reverberation is com-
pensated by subtracting the cepstral mean of the utterance at the

stage of feature extraction. The spectrum | X (f, w)|>" obtained by
reducing the late reverberation can be estimated as:

X(f,0)*" & maz {|X(£,0)*" —

CXDMIX(F —dow) P H(d @)Y

[e3 =
|F(0,w)|?"

.ﬂ-\X(f,w)\Q"}- ©)

where « is the noise over the estimation factor, /3 is the spectral floor
parameter to avoid negative or under flow values, |X (f,w)|*"
[S(f,w)|2"[H(0,w)|?", |S(f,w)|>" is the spectrum of the esti-
mated clean speech and fI(d,w),d = 0,1...D — 1 is the STFT
of the impulse response, which can be blindly estimated using the
multi-channel LMS algorithm method mentioned in Section 3.2. D
and n are the number of reverberation windows and the exponent
parameter.

3.2. Blind Estimation of Impulse Responses

In this section, we describe the blind estimation of the spectra of
an impulse response H(d,w) using Eq. (3). In [6], MCLMS in a
time domain was proposed to blindly estimate the impulse responses
of each channel. In this study, we used a variable step-size uncon-
strained MCLMS (VSS-UMCLMS) algorithm extended in the time
domain to the frequency domain.

In the absence of additive noise, we have the following relation-
ship for the correlation matrix and impulse response.

RXz'Xi(T + 1)Hj(7—) = RXiX] (7'+ 1)Hi(7')
Z/]: 1,2, 7N7i?1:.7’9

“

Ry, x, (1) = E[X;(7)X] (7)], ©)
Xi(7) = [Xi(7), Xi(T = 1), -+, Xi(r = D+ 1)]T, (6)
H1(T) = [Hi(‘ra 0)7 7Hi(77d)a"' :Hi(TzD - l)}Ty (@)

where i is the channel number, X; (7) is the spectrum of the observed
signal at frame 7, H;(7) is the spectrum of the impulse response at
frame 7, and H;(7,d) is the spectrum of the impulse response at
frame 7 corresponding to the frame delay d.

By summing up the N-1 cross correlations and some further
calculation, the spectra of the impulse responses can be estimated
blindly. For details of this approach refer to the literature [4] and
[6].



4. COMBINATION METHOD AND ITS EFFICIENT
COMPUTATION

It is difficult to determine the optimum exponent parameter n and
noise over the estimation factor o for GSS. In this study, a combi-
nation of the various likelihood speaker models with different com-
pensation parameter sets is used.

When a combination of multiple methods is used to identify the
speaker, the likelihood of speaker models with different compensa-
tion parameter sets is linearly coupled to produce a new score L
given by:

Lk

comb =

~l=

I
YL, k=12, K, ®)
i=1

where LY is the likelihood produced by the k-th speaker model with
the i-th compensation parameter set. K is the number of speak-
ers registered and I denotes the number of compensation parameter
sets. A speaker with the maximum likelihood is decided as the target
speaker. By doing this, special tuning is not necessary for GSS.

However, the computational time is linearly increased accord-
ing to the number of compensation parameter sets. In this study, an
efficient computational method is proposed. Initially, the power SS
(that is, compensation parameter n = 1) is used to suppress the re-
verberation and the likelihoods of all speaker models are calculated.
Second, only the speaker models with the top N-best likelihoods are
used to calculate a new likelihood according to different compensa-
tion parameter sets. Finally, the likelihood calculated by a different
compensation parameter set is combined to decide the target speaker.

The total computational time 74 for speaker identification is
about Tx + T7, where Tr and T;, are the computational times
for feature extraction and likelihood calculation of K speaker mod-
els. The computational time for the combination (that is, conven-
tional combination method) of various results with I parameter set
is T5°™" = I(Ty + Tr) = ITa. The computational time for our
proposed efficient combination method using the N-best likelihood
is:

(I-1)N

TEnmh I

Tr+Tr+ (I —1)Tr +

1 (I-1)N
T I G i
R

Tr

y+1I—1)Ta, 9

where T, equals vT’». The computational cost decreased compared
with the conventional combination method.

4.1. Experimental Setup

The proposed method for hands-free speaker identification was eval-
uated in artificial reverberant speech for the sake of convenience
2. Eight types of multi-channel impulse responses were selected
from the Real World Computing Partnership (RWCP) sound scene
database [8] and the CENSREC-4 database [9], which were con-
voluted with clean speech to create artificial reverberant speech.
A large-scale database, the Japanese Newspaper Article Sentence
(JNAS) [10] corpus, was used as clean speech. The utterances of
training data are composed of 130 male and female speakers with
10 utterances taken from each. Each speaker made 20 utterances for
the test.

2For real reverberant speech, the processing step is the same as for artifi-
cial reverberant speech.
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Table 1. Details of recording conditions for impulse response mea-
surement.  RT60 (second) ” : reverberation time in room. “S 7 :
small, “L " : large.

array no | room | mic type \ RT60(s)
(a) CENSREC-4 database for training
1 Japanese style room linear 0.40
2 Japanese style bath linear 0.60
3 elevator hall linear 0.75
(b) RWCP database for test
4 echo room (cylinder) circle 0.38
5 tatami-floored room (S) circle 0.47
6 tatami-floored room (L) circle 0.60
7 conference room circle 0.78
8 echo room (panel) linear 1.30

Table 2. Conditions for speaker identification.

sampling frequency 16 kHz
frame length 25 ms
frame shift 10 ms

25 dimensions with CMN
(12 MFCCs + A + Apower)
GMMs with 128 diagonal
covariance matrices

feature space

acoustic model

Table 3. Conditions for GSS-based dereverberation.

analysis window Hamming
window length 32 ms
window shift 16 ms
number of reverberant windows D 6
(192 ms)
spectral floor parameter (3 0.15
noise over estimation factor a 0.5
exponent parameter n 0.5

Table 1 lists the impulse responses for the training and test sets.
For the RWCP database, a four-channel circular or linear micro-
phone array was taken from a circular + linear microphone array
(30 channels). The circle type microphone array had a diameter of
30 cm. The microphones of the linear microphone array were lo-
cated at 2.83 cm intervals. Impulse responses were measured at sev-
eral positions 2 m from the microphone array. For the CENSREC-4
database, four-channel microphones were taken from a linear micro-
phone array (seven channels) with the microphones located at 2.125
cm intervals. Impulse responses were measured at several positions
0.5 m from the microphone array.

Table 2 gives the conditions for speaker identification. 25-
dimension MFCCs and GMMs with 128 mixtures were used. Table
3 gives the conditions for GSS-based dereverberation. The parame-
ters shown in Table 3 were determined empirically.

Four methods were compared in this study. The description
of these methods are presented in Table 4. For all these methods,
CMN with delay-and-sum beamforming was performed. Clean
speech models, which were directly trained by clean speech, were
used as speaker models for method 1 and method 2. For method 1,
only CMN with beamforming was used to reduce the reverberation.
The GSS-based dereverberation was performed at the test stage for



Table 4. The description of each speaker identification method.

Method # Speaker models Processing at
test stage
1 Clean speech models CMN with
(Baseline) beamforming
2 Clean speech models GSS-based
(Method in [4]) dereverberation
3 Reverberant CMN with
speech models beamforming
4 Dereverberant GSS-based
(Proposed method) speech models dereverberation

Table 5. Hands-free speaker identification rates (%)

Method # | # of impulse response condition for test | Ave.
4 157 6 [ 7] 8

1 66.7 | 53.3 | 432 | 43.7 383 49.0

2 53.1 | 329 | 256 | 253 29.1 332

3 91.6 | 88.4 | 86.5 | 87.6 88.0 88.4

4 94.0 | 90.6 | 91.0 | 90.5 92.3 91.7

method 2, which is the same as the condition for hands-free speech
recognition [4]. Reverberant speech models, which were trained
using artificial reverberant speech with three types of CENSREC-4
impulse responses (see Table 1(a)), were used as speaker models
for method 3. Method 4 is our proposed method. For the proposed
method, both the reverberation of the training and test data were
suppressed by GSS-based dereverberation, and the dereverberant
speech was used to train dereverberant speech GMMs.

4.2. Experimental Results

The hands-free speaker identification results for the four methods
are compared in Table 5. “# of impulse response condition for test”
in Table 5 denotes the ““array no~ in Table 1(b). In previous re-
search, the speech recognition results in reverberant environments
with clean speech models were improved when using the GSS-based
dereverberation method [4]. However, method 2 proposed in [4] de-
graded the speaker identification performance in the speaker identi-
fication field. The result of method 3, which was based on reverber-
ant speech models, improved speaker recognition significantly be-
cause multiple reverberant environments were trained. However, the
reverberation was not suppressed, so a further improvement could
be the outcome of employing blind dereverberation. The proposed
method without parameter tuning (that is, « = n = 1), which sup-
pressed the reverberation in both training and test data, outperformed
all the other methods under all reverberant environments. The pro-
posed method achieved a relative error reduction of 83.7% compared
with the baseline (method 1) and 28.4% compared with reverberant
speech models (method 3).

The performance of the proposed GSS-based dereverberation
method may vary with different compensation parameters. We con-
firmed this and compared the performance with different parameters
in Table 6. For GSS, most exponent parameters n are set from 0.1 to
1 in any particular study. Thus, in this study, the exponent parame-
ter n was set as 0.1, 0.3, 0.5, 0,7, 1.0, and the noise over estimation
factor o was set as @« = n or @ = 2n. The results show that the
optimum parameter depends on the reverberant environment and is
very difficult to determine. By combining the results with various
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Table 6. Comparison of results with different compensation param-
eter sets and combination methods for speaker identification (%)

parameters # of impulse response condition for test | Ave.
(n,a) 4 1517 6 | 7] 8
(0.1,0.1) 952 | 90.2 | 87.2 | 90.5 92.6 91.1
0.3,0.3) 96.2 | 89.9 | 89.6 | 87.8 89.9 90.7
(0.5,0.5) 96.2 | 91.1 | 91.4 | 90.1 92.3 92.2
(0.7,0.7) 95.0 | 90.3 | 91.4 | 90.8 92.5 92.0
(1.0, 1.0) 94.0 | 90.6 | 91.0 | 90.5 92.3 91.7
0.1,0.2) 94.6 | 88.9 | 88.0 | 86.0 90.4 89.6
(0.3,0.6) 95.8 | 89.9 | 89.8 | 88.8 91.3 91.1
0.5, 1.0 953 | 91.0 | 91.0 | 90.5 93.1 92.2
(0.7, 1.4) 94.5 | 90.9 | 91.7 | 90.6 92.9 92.1
((1.0,2.0) 93.8 | 89.8 | 90.9 | 90.3 92.0 91.3
Conventional
combination | 96.2 | 92.5 | 92.6 | 92.5 94.1 93.6
Efficient
combination | 96.2 | 92.5 | 92.6 | 92.5 94.1 93.6

compensation parameter sets, the combined result achieved a rela-
tive error reduction of 17.9% compared with the individual results
with the optimum parameter. The determination of the parameters
for GSS was solved while the computational cost increased. For the
conventional combination method, the computational time Tj”"b is
10 (the number of the parameter sets I is 10) times the computa-
tional time for the individual method T%4. The computational time
Te*™ for our proposed efficient combination method is 1.27T4, 3
and about 1/875°™" when the performance is the same as the con-
ventional combination method, which uses all likelihoods by all the
speaker models. As a result, the proposed efficient combination
method achieved a relative error reduction of 87.5% compared with
the baseline, and 44.8% compared with reverberant speech models
with almost the same computational cost.

5. CONCLUSIONS AND FUTURE WORK

Previously, Wang et al. proposed a blind dereverberation method
based on GSS employing the multi-channel LMS algorithm for
hands-free speech recognition [4]. In this study, we applied this
method to hands-free speaker identification. However, in the speaker
identification field, the method proposed in [4] performed worse than
the baseline method, which was opposite to the trend for speech
recognition. We addressed this problem by training speaker models
using dereverberant speech, which was obtained by suppressing
reverberation from arbitrary artificial reverberant speech. The rever-
berant speech for test data was also compensated using GSS-based
dereverberation. By combining the various compensation parameter
sets for GSS and calculating the likelihood efficiently, a more robust
result was obtained without parameter tuning. Without increasing
computational time, the proposed method based on dereverberant
speech models achieved a relative error reduction of 87.5% com-
pared with the conventional CMN with beamforming using clean
speech models, and 44.8% compared with reverberant speech mod-
els.

In the future, we will evaluate the speaker identification experi-
ments using the proposed method in a real environment.

3In this study, the values of T, N, K,y in Eq. 9 are 10, 5, 260 and 92.
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