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ABSTRACT

 

Automatic speaker recognition can achieve a high level of 
performance in matched training and testing conditions. 

However, such performance drops significantly in mis-

matched noisy conditions. Recent research indicates that a 

new speaker feature, gammatone frequency cepstral coeffi-

cients (GFCC), exhibits superior noise robustness to com-

monly used mel-frequency cepstral coefficients (MFCC). To 

gain a deep understanding of the intrinsic robustness of 

GFCC relative to MFCC, we design speaker identification 

experiments to systematically analyze their differences and 

similarities. This study reveals that the nonlinear rectifica-

tion accounts for the noise robustness differences primarily. 
Moreover, this study suggests how to enhance MFCC ro-

bustness, and further improve GFCC robustness by adopting 

a different time-frequency representation. 

Index Terms— speaker identification, MFCC, GFCC, 

noise robustness, speaker features 

1. INTRODUCTION 

Automatic speaker recognition systems perform very well in 

certain conditions, e.g. without noise, room reverberation, or 

channel variations. However, such conditions can hardly be 

met in practice. Real acoustic environments present various 

challenges to speaker recognition systems. Robustness of 
speaker recognition systems must be addressed for practical 

applications. 

One challenge is channel/session variation. Recent 

NIST speaker recognition evaluations (SRE) have mainly 

focused on addressing the problem of channel variations in 

speaker verification. State-of-art systems use techniques 

such as joint factor analysis and i-vector based probabilistic 

linear discriminant analysis [1], [2]. Another challenge is 

additive noise. In our daily listening environments, speech 

often occurs simultaneously with noise sound. To improve 

noise robustness, Ming et al. propose to train speaker mod-

els in multiple noisy conditions to alleviate the mismatch 
with noisy test conditions [3]. Alternatively, one can employ 

speech enhancement algorithms to clean up noisy speech 
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prior to speaker recognition. 

The human ability to perform speaker recognition in 

noisy conditions has motivated studies of robust speaker 

recognition from the perspective of computational auditory 

scene analysis. In one such study [4], we showed that a new 

speaker feature, gammatone frequency cepstral coefficients 

(GFCC), shows superior noise robustness to commonly used 

mel-frequency cepstral coefficients (MFCC) in speaker iden-

tification (SID) tasks (see also [5]). As for the reason, we 
speculated that the front-end of GFCC, the gammatone 

filterbank, might be more noise-robust than that of MFCC, 

the mel-filterbank. In particular, the frequency scales em-

ployed in the two filterbanks were believed to be the key 

difference although no convincing evidence was presented 

to support this hypothesis.  

Why does GFCC appear to be more robust than MFCC, 

at least for speaker identification? We believe this is an im-

portant question for the study of noise-robust speaker recog-

nition. This study was designed to not only answer this 

question but also gain a deep understanding of the intrinsic 

noise robustness of GFCC and MFCC features. In this 
study, we first analyze all of their differences, which helps 

us to generate a number of assumptions. For each assump-

tion, we design a corresponding set of experiments to test it. 

In this way, we are able to narrow down possible explana-

tions, which eventually reveal the desired answer.  

The rest of the paper is organized as follows. Section 2 

describes the detailed differences between GFCC and 

MFCC. Section 3 presents possible reasons and experi-

mental validations, followed by further exploration in Sec-

tion 4. We conclude this paper in Section 5. The relationship 

of this study with prior work is discussed in Section 6. 

2. DIFFERENCES IN MFCC AND GFCC 

DERIVATIONS 

MFCC is widely used in both speech and speaker recogni-

tion. The HTK toolkit is frequently used to derive MFCC 

[6], as is in [4]. Therefore, we take a closer look at the HTK 

version MFCC generation process. 

MFCC Extraction (HTK version): 

1. Pre-emphasize input signal 
2. Perform short-time Fourier analysis to get magnitude spectrum 
3. Wrap the magnitude spectrum into mel-spectrum using 26 tri-
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angular overlapping windows where center frequencies of the 
windows are equally distributed on the mel scale 

4. Take the log operation on the power spectrum (i.e. square of 
mel-spectrum) 

5. Apply the discrete cosine transform (DCT) on the log-mel-

power-spectrum to derive cepstral features 
6. Perform cepstral liftering 

The detailed process of GFCC extraction is listed as follows 

[4]. 

GFCC Extraction: 

1. Pass input signal through a 64-channel gammatone filterbank 
2. At each channel, fully rectify the filter response (i.e. take abso-

lute value) and decimate it to 100 Hz as a way of time window-
ing. Then take absolute value afterwards. This creates a time-
frequency (T-F) representation that is a variant of cochleagram 
[7] 

3. Take cubic root on the T-F representation 
4. Apply DCT to derive cepstral features 

 

Broadly speaking, there are two major differences. The ob-

vious one is the frequency scale. GFCC, based on equivalent 
rectangular bandwidth (ERB) scale, has finer resolution at 

low frequencies than MFCC (mel scale). The other one is 

the nonlinear rectification step prior to the DCT. MFCC 

uses a log while GFCC uses a cubic root. Both have been 

used in the literature. In addition, the log operation trans-

forms convolution between excitation source and vocal tract 

(filter) into addition in the spectral domain. Besides these 

two major differences, there are some other notable differ-

ences that are summarized in the following table. Next we 

analyze each of the differences in Table 1 in detail. 

 

3. DIAGNOSIS AND EXPERIMENTAL RESULTS 

3.1. Experimental setup and benchmark results 

The study in [4] was reported on the 2002 NIST SRE da-

taset with 330 speakers. It is unclear if the noise robustness 

advantage of GFCC is specific to this dataset. To address 

this concern, we switch to the TIMIT corpus. Out of the 

entire 630 speakers, 330 are randomly chosen to match the 
number of speakers in [4]. Each speaker has 10 utterances 

and we choose 8 for training and remaining 2 for testing. 

We scale clean training and test data to an average 

sound intensity (see eq. 1 in Sec. 4.3) of 60 dB. Clean test 

data is then mixed with factory noise from the NOISEX-92 

database at a signal-to-noise ratio (SNR) of 0 dB. We use 

the ideal binary mask (IBM) for voice activity detection [7]. 

In other words, the frames with at least one reliable T-F 

unit, labeled as 1 the IBM, are selected for recognition. 

Twenty-two-dimensional MFCC and GFCC, with 0
th
 coeffi-

cient removed, are used for this study. No cepstral mean 
normalization is performed as the long-term mean of 

cepstral features is not reliable to represent non-stationary 

noises such as factory noise. Speakers are modeled using 

Gaussian mixture models (GMM) adapted from a 1024-

component universal background model [8]. No speech sep-

aration is performed as the main goal is to evaluate the in-

trinsic noise robustness of MFCC and GFCC features. 

First we establish the benchmark SID performance. The 

SID performance is shown in Table 2. 

 
As shown in Table 2, the SID performance is rather poor in 

both cases due to a relatively low SNR and the absence of 
speech separation. However, it is obvious that GFCC is sub-

stantially more noise-robust than MFCC, which is consistent 

with the findings in [4]. 

3.2. Difference 1: Pre-emphasis 

One pre-processing difference between GFCC and MFCC is 

pre-emphasis. As a common practice, pre-emphasis is 

adopted in the HTK toolkit by applying a high-pass filter 

with a setting of [1, -0.97]. High-pass filtering inevitably 

alters energy distribution across frequencies, as well as the 

overall energy level. This could have significant impact on 

the energy-related GFCC features. To verify if pre-emphasis 
degrades MFCC’s noise robustness, we remove it from 

MFCC and add it to GFCC. The resulting SID performance 

is shown in the following table. 

 
Table 3 suggests that removing pre-emphasis has little im-

pact on MFCC’s noise robustness. Adding pre-emphasis to 

GFCC drops performance as expected, even though the al-

tered GFCC is still substantially more robust.  Therefore, 

pre-emphasis is not the answer. 

3.3. Difference 2: Number of frequency bands/channels 

In the aforementioned MFCC generation, magnitude spec-
trum is wrapped into 26 mel-bands with triangular overlap-

ping windows. GFCC uses the 64-channel gammatone 

filterbank as the front-end. It is reasonable to assume that 

more frequency channels may lead to better noise robust-

ness. We test this assumption by increasing the number of 

Category MFCC GFCC 

w/ Pre-emphasis 3.94 (default) 10.76 

w/o Pre-emphais 3.03 16.36 (default) 

Table 3: Impact of pre-emphasis on GFCC and MFCC in terms 
of speaker recognition rates (%) 

Category MFCC GFCC 

Benchmark performance 3.94 16.36 

Table 2: Benchmark performance of GFCC and MFCC in 
terms of speaker recognition rates (%) 

Category MFCC GFCC 

Pre-emphasis Yes No 

# of Frequency Bands 26 64 

Cepstral Liftering Yes No 

Frequency Scale Mel ERB 

Nonlinear Rectification Logarithmic Cubic Root 

Scale-invariant (w/o 0
th

 

coefficient) 
Yes No 

Intermediate T-F Rep-

resentation 
Mel Spectrum 

Variant of 
Cochleagram 

Table 1: Differences between GFCC and MFCC 
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triangular windows and decreasing the number of channels 

of the gammatone filterbank. Table 4 presents the results. 

 
As shown in Table 4, increasing the number of bands does 

not improve the robustness of MFCC. Using the 26-channel 

gammatone filterbank degrades the performance of GFCC 

by a small amount, but it is still substantially more robust 

than MFCC. Clearly, the number of frequency 

bands/channels is not the answer. 

3.4. Difference 3: Cepstral liftering 

A post-processing difference between these two features is 
cepstral liftering. What it does is to filter cepstral coeffi-

cients. A property of DCT operation is “energy compaction” 

[9], meaning that higher dimensions of cepstral coefficients 

are numerically very small. This is not a problem, but HTK 

toolkit purposely amplifies higher dimensional coefficients 

to balance the magnitudes and variances across dimensions 

for the sake of displaying parameters, variance flooring, etc. 

GFCC resolves the same problem by taking the lower 22-

dimensional coefficients (without 0th coefficient). Therefore 

there is no need of cepstral liftering for GFCC. If no cepstral 

liftering is the reason of GFCC’s noise robustness, we ex-
pect the robustness of MFCC will be substantially improved 

by dropping cepstral liftering. The experiments to test this 

assumption produce results shown in the following table. 

 
As illustrated in Table 5, there is no substantial performance 

change by adding or dropping cepstral liftering for either 

feature. Hence, cepstral liftering does not appear to be the 

reason. 

3.5. Difference 4: Frequency scale 

We now evaluate the main hypothesis put forward in [4], 

frequency scale. It argues that the ERB scale has finer reso-

lution than the mel scale at the low frequency range where 
speech energy primarily resides. However, recent studies on 

speaker recognition suggest that high frequency range also 

contains meaningful speaker information and should not be 

overlooked [10]. They also show that the linear scale is as 

robust as the mel scale in certain noisy conditions. This 

somewhat contradicts the hypothesis. To test this hypothe-

sis, we make the triangular overlapping windows equally 

distributed on the ERB scale. In the meantime, we make 

sure the center frequencies of the gammatone filters are 

equally distributed on the mel scale. If this hypothesis holds 

true, we expect a performance boost from MFCC and a per-

formance drop for GFCC. Results are presented in Table 6. 

 
The results in Table 6 show that changing the frequency 

scale does not degrade GFCC’s robustness. At the same 

time, it does not improve MFCC’s robustness, either. Note 

that replacing ERB scale with mel scale even slightly im-

proves the performance of GFCC. It appears that mel scale 

is a better scale. Hence, scale is not the answer. 

3.6. Difference 5: Log vs. cubic root and scale invariance 

Another main difference between the two features is the 

nonlinear rectification. It is directly correlated with the scale 

invariance property. Assuming an input signal s(t) is scaled 
by a constant factor of k. Due to the linearity of Fourier 

analysis and triangular window wrapping, this constant fac-

tor is carried to the mel-spectrum. By taking the log opera-

tion on the mel-power-spectrum, the constant factor be-

comes an additive term. It is easy to prove that the DCT of a 

constant term is all 0 except for the 0th coefficient. There-

fore, by excluding 0th coefficient (energy related), MFCC is 

the same no matter how we scale the input signal. GFCC 

also carries the constant factor k into the intermediate T-F 

representation because of linearity of gammatone filterbank. 

Nonetheless, the cubic root operation cannot convert the 
factor into an additive term. As DCT is linear, this cubic 

root of k will be manifested in the cepstral coefficients. This 

is why GFCC is not scale-invariant. In other words, we do 

not get the same GFCC if we scale the input signal by a 

constant factor. This could make a difference in the noise 

robustness. We create new MFCC by replacing the log with 

the cubic root and similarly for GFCC by using the log. To 

be consistent, for the new MFCC, we drop pre-emphasis and 

cepstral liftering. We add them on the new GFCC. Results 

are shown in the following table. 

 
As demonstrated in Table 7, the noise robustness of MFCC 

is dramatically improved by taking the cubic root rectifica-

tion. Meanwhile, GFCC loses its advantage by switching to 

the log. The nonlinear rectification is therefore a likely rea-

son for GFCC’s superior robustness. It is worth pointing out 

that the new MFCC is even more robust than the regular 

GFCC, yielding 12% absolute improvement. With both fea-

tures undergoing the cubic root operation, the last difference 

would be the T-F representation prior to the DCT. Our re-
sults in Table 7 suggest that mel-power-spectrum is a better 

choice. We examine this in the next section. 

Category MFCC GFCC 

Log 3.94 (default) 3.03 

Cubic Root 28.48 16.36 (default) 

Table 7: Impact of nonlinear rectification on GFCC and MFCC 
in terms of speaker recognition rates (%) 

Category MFCC GFCC 

Mel Scale (26 bands) 3.94 (default) 17.88 

ERB Scale (64 bands) 3.33 16.36 (default) 

Table 6: Impact of frequency scale on GFCC and MFCC in 

terms of speaker recognition rates (%) 

Category MFCC GFCC 

w/ Cepstral Liftering 3.94 (default) 16.36 

w/o Cepstral Liftering 3.03 16.36 (default) 

Table 5: Impact of cepstral liftering on GFCC and MFCC in 
terms of speaker recognition rates (%) 

Category MFCC GFCC 

26 Bands/Channels 3.94 (default) 13.33 

64 Bands/Channels 2.12 16.36 (default) 

Table 4: Impact of number of frequency bands/channels on 
GFCC and MFCC in terms of speaker recognition rates (%) 
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4. FURTHER EXPLORATION 

4.1. Study of intermediate T-F representation 

MFCC comes from mel-power-spectrum where each ele-

ment represents power/energy of the corresponding T-F 

unit. The T-F representation of GFCC is a variant of the 

cochleagram, which is a T-F representation with each ele-
ment representing energy of the corresponding T-F unit. 

GFCC is derived by decimating filter responses instead of 

calculating energy at each T-F unit. The decimation process 

potentially throws away too much information. We now 

derive GFCC directly from the cochleagram. In other words, 

we apply the cubic root rectification on the cochleagram. 

We also explore different combinations of frequency scales 

and the number of frequency bands as shown in Table 8. 

 
As seen in Table 8, GFCC derived from the cochleagram 

improves the SID performance to a comparable level with 

MFCC. Both obtain optimal performance when used togeth-

er with the mel-scale and 26 bands/channels. This strongly 

indicates that the advantage of MFCC in Table 7 is mainly 

due to the intermediate T-F representation. 

4.2. Results on other noises and SNRs 

All the previous analysis was made only in one noisy condi-

tion (an SNR of 0 dB and factory noise). We have per-
formed the same experiments at an SNR of 6 dB with facto-

ry noise and get a similar performance profile. Experiments 

on two new noises, white noise and speech shape noise, 

further confirm the findings in this paper. All of these exper-

iments have indicated that GFCC is more noise-robust than 

MFCC due to the nonlinear rectification. The new MFCC 

using the cubic root operation substantially improves the 

SID performance and even outperforms GFCC. Deriving 

GFCC from the cochleagram substantially improves its ro-

bustness and produces comparable or better results than the 

improved MFCC. The optimal number of bands/channels 
depends on specific noisy conditions. Similar trends have 

also been observed using the 2002 NIST SRE dataset. 

4.3. The scale variance problem 

As we pointed out in Section 3.6, GFCC is not a scale-

invariant feature. To perform speaker recognition, we need 

to scale both training speech and clean test speech (not mix-

ture) to a comparable energy level. We use an utterance-

level average sound intensity (in dB) as the measurement of 

overall energy level given in the following equation. 

 

  


















tslength

ts

E t

2

10log10 ,   (1) 

where E is the average sound intensity and s(t) is the input 

signal. It is straightforward to scale training data to a desired 

intensity (e.g. 60 dB). However, it is not trivial to infer the 

intensity of the underlying target signal in a mixture and 

scale it to the same level of the training data. There are two 

ways to address this scale variance issue. One is to first es-

timate the input SNR. There are reasonably reliable SNR 

estimation algorithms in the literature. Given a roughly es-

timated SNR, we can readily infer the energy ratio between 

the target and interference and calculate the intensity of the 
target based on the intensity of the mixture. Another way is 

to estimate the IBM first. We then average the energy-

related T-F representation only in reliable T-F units which 

are dominated by the target. This average can be used to 

normalize the entire T-F representation prior to the DCT 

operation. Training data can be processed similarly where 

all the T-F units are deemed reliable. Both techniques have 

been shown to be effective in our study. 

5. CONCLUDING REMARKS 

To conclude, we have conducted an in-depth study on the 

noise robustness of GFCC and MFCC features. Our experi-

ments first confirm the superior robustness of GFCC relative 
to MFCC exists on a new corpus. By carefully examining all 

the differences between them, we conclude that the nonline-

ar rectification mainly accounts for the noise robustness 

differences. In particular, the cubic root rectification pro-

vides more robustness to the features than the log. 

Why is the cubic root operation better? It might be the 

case that some speaker information is embodied through 

different energy levels. In a noisy mixture, there are target 

dominant T-F units or segments indicative of this energy 

information. The cubic root operation makes features scale-

variant (i.e. energy level dependent) and helps to preserve 
this information. The log operation, on the other hand, does 

not encode this information. 

We have shown that by modifying MFCC extraction, 

substantial noise robustness improvement is obtained. Since 

MFCC is widely used in automatic speaker and speech 

recognition, the findings of this paper should shed new light 

on effective feature representations for noise robustness. 

6. RELATION TO PRIOR WORK 

This work presented here focuses on the puzzling question 

raised in a recent study of robust speaker identification [4]: 

why is GFCC intrinsically more noise-robust than MFCC? 

The study in [4] gave two hypotheses without experimental 
validation. The present study confirms the existence of this 

phenomenon on a new dataset. Then we have evaluated all 

the differences systematically, and our analysis reveals the 

rather surprising answer. 

Configuration 
GFCC-

decimation 

GFCC-

cochleagram 

MFCC-

cubic root 

ERB Scale 

(64 bands) 

16.36 (de-
fault) 

26.36 20.91 

ERB Scale 

(26 bands) 
13.33 23.18 26.36 

Mel Scale 

(26 bands) 
17.88 28.48 28.48 

Mel Scale 

(64 bands) 
15.91 20.91 24.55 

Table 8: Impact of T-F representation on GFCC and MFCC in 
terms of speaker recognition rates (%) 
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