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ABSTRACT

This paper proposes an i-matrix for text-independent speak-
er recognition. The framework of the proposed i-matrix is
similar to an i-vector. However, the presented method takes
short-time cepstral feature matrices as inputs to explore both
cepstral feature distribution and temporal information for the
recognition task in the phase of statistical modeling. In the
i-matrix, the variability of an utterance is constrained by t-
wo subspaces U and V, which are estimated by an iterative
method on a large database. When U and V' are well built,
each utterance is represented by an i-matrix. Decision func-
tion is a cosine kernel. Experiments were carried out on the
tel-tel-English condition of NIST SRE 2008 core task. Com-
pared with an i-vector-LDA, the average EER and MDCF of
an i-matrix-LDA showed a relative decrease of 4.82% and
5.12% respectively.

Index Terms— 1-vector, i-matrix, Gaussian mixture mod-
els, text-independent speaker recognition

1. INTRODUCTION

After front-end processing and feature extraction !, the core
task of text-independent speaker recognition becomes a com-
parison of two cepstral feature sequences. The cepstral fea-
ture sequence can be seen as a temporal sequence with a con-
cept, i.e. speaker ID. And for a given temporal sequence, our
task is to identify the speaker ID .

Most recent state-of-art statistical modeling methods,
such as joint factor analysis (JFA) [1, 2, 3] and i-vector
(ivec) [4], originates from Gaussian mixture model-universal
background model (GMM-UBM) [5]. The GMM-UBM has
two implicit assumptions. One is that each speaker is char-
acterized by a unique probability density function (PDF).
The other is that temporal information is insignificant in the
phase of statistical modeling 2, which simplifies the recog-
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In this paper, the extracted feature includes both basic cepstral feature
and its derivatives, i.e. MFCC + delta, double delta + feature warping.

%In the phase of feature extraction, temporal information is modeled by
taking delta and double delta operations. But in the phase of statistical mod-
eling, we take a extracted cepstral feature vector, including basic feature and
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nition problem. Under these two assumptions, each cepstral
feature vector from a single speaker is assumed to be an
instance generated independently from a speaker PDF. The
first assumption is reasonable while the second assumption
makes the use of dynamic short-time information impossible.
The short-time information is proven to be beneficial in a
text-independent speaker recognition system with high-level
feature [6].

To explore both cepstral feature distribution and tempo-
ral information for the recognition task during the phase of
statistical modeling, this paper presents an i-matrix. Different
from the i-vector, the inputs of the i-matrix are short-time cep-
stral feature matrices. A UBM with weights, mean matrices
and diagonal covariance matrices is built via an expectation-
maximum (EM) algorithm. A left-hand subspace U and a
right-hand subspace V' are assumed to reduce the degree of
freedom. The assumption, derivation and application of the
i-matrix will be illustrated in detail in the following sections.

The remainder is as follows. Section 2 reviews the i-
vector, section 3 proposes the i-matrix, and section 4 gives
experimental results on the tel-tel-English condition of NIST
SRE 2008 core task. Finally, a conclusion is summarized in
section 5.

2. I-VECTOR

One shortage in the traditional GMM-UBM system is the high
degree of freedom during enrollment and test phase. To re-
duce it, the i-vector assumes a total variability subspace T’
which constrains free parameters in a low dimensional sub-
space. And each utterance is represented by a subspace load-
ing factor w

Wn = Pubm + Tw, (D

where pupym denotes the mean supervector of a UBM and
subindex n denotes the n-th utterance, 1 < n < N. N is the
number of training utterances.

The total variability subspace 1" and covariance matrix 3
are estimated by maximizing the summation of log likelihood
function on a very large training database [1, 3]. Once 7" and

its derivatives, as a static point. Here, the temporal information means the
dynamic information among several cepstral feature vectors. It is ignored in
a traditional GMM-UBM system.
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3 are fixed, w is computed by a variational Bayesian estima-
tion [7].

3. I-MATRIX

The i-vector takes cepstral vectors as the input, which can’t
take advantage of temporal information in the phase of sta-
tistical modeling. Temporal information, often studied in the
high-level system, such as pronunciation, phonotactics and
prosody, is proven to be effective. Here, the i-matrix is de-
signed to take not only cepstral feature distribution informa-
tion but also temporal information for the recognition task.
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Fig. 1. Comparison of cepstral feature inputs between i-
vector and i-matrix

3.1. Assumption

To begin with, we rewrite the GMM formula with matrices as
inputs

Wi

(vee(%:)|2

1
exp (—5H (O — )+ 2L % (0 — y) ||F>
2

where F' denotes the dimension of cepstral feature, K denotes
the frame number of adjacent cepstral features, O is a F' x K
matrix (short-time cepstral feature sequence). M denotes the
Gaussian mixture number, w; is the i-th weight, pu; is the i-th
F x K mean matrix, >; is a ' x K diagonal covariance ma-
trix 3, . and . are element-by-element power and product
respectively 4, and || - || 7 is the Frobenius norm. vec(-) is an

3 Although the form of X; is a full matrix, the physical meaning is a diag-
onal matrix.
4They are borrowed from Matlab.
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operation which converts a matrix into a supervector by stack-
ing each column and diag(-) is an operation which converts a
vector into a diagonal matrix.

The i-matrix assumes two variability subspaces U (M F X
Ry, Ry is the rank of U) and V (MK x Ry, Ry is the
rank of V). For n-th utterance and i-th mixture, the model
assumption is

fnyi = pubm,i + Ui X Vi 3)
with the i-matrix X,, ( Ry X Ry ). The U is similar to the role
of T in the i-vector and the V is the subspace which captures
temporal information.

3.2. Derivation

Our goal is to maximize the summation of log-likelihood over
an auxiliary training data corpus

N T, M
argy max Z Z log Z f(Ov,10:)

n=1t,=1 i=1

“

where T, is the duration of the n-th utterance. For clarity, we
use 0; = {w;, pi, X4, Uy, Vi, X} to denote the parameter set
of the i-th component.

For a O, , we have

M
log [Z f(O, M)}

=log [Z £(0,16;

Otu

0:)
F(0,16)

M
—log {Z f(Oy,167) | +log Z f(Oy, 165
=1
M M
[(O1,107)  J(Ou,10:) :
=log . - + log f(O,1607)
[2; S f(O,105) (O, 1607) ;
M M
f(O,107) f(O,10:) /
> ~———1o o tlog | ) f(O,167)
g YL f(On,18) T f(On10) g
5)
where 0’ is a known parameter set. Note that
M ,
Z f(Otn|07,) — 17 (6)

S £(O,10)

the inequality of above equation holds for the convex property
of logarithmic function. Thus, we just need to select 6 to
satisty

arg, max Z

i=1

i=1

f(O,165)

———— " _Jog f(O4,|0;) + const (7)
S FO o)




We take a special case {wybm, i, fbubm, is Subm,i, Uss Vi, Xn = 0}
as 0’ and have

“Yubm,i (Ot,, ) log f(Otn

i)

Wi

5 |diag(vee(X;))| 2

Z 'Yubm,i(Otn) |:10g (27T)

tn, — Hubm,i — UanVit) D AR

(Ot" - ﬂubm,i - Uan‘/z‘t) HF:|

()
where
J (O, |0ubm i)
’Yubm,i(Otn) = =i n ’ 9)
> i=1 f(Ox, [Oubm,;)
To simplify the above equation, we define some symbols
Tn
Zni = Yomi(Or,)
tn=1
T,
Fni = Z “Yubm, i (0t,)(O,, — ,Uubm,i)~ XN
n (10)
Tn
_1
S"vi = Z ’Yubm,z’(otn) |:(Otn - ,U/ubm,i). * Ei-A 2:|
tn=1
At
|:(Otn - /lubm,i). * Ei.A_§:|
and
UanV;‘t- * E@Ai% = Uanf/it (11)

So the last term of Equation (8) is written as follows

T M
Z Z’Yubm i Ot H Otn Hubm,i — UiX"Vit) ¥
1t,=1
1k (O, — pubm,i — Vi e
tr{Sn,i — 2Fn7i(UanV?)t + UZXTL‘?Zt(UZX”‘Z«t)t}
1
(12)

There is no analytical solution for the above equation and we
turn to an iterative method which is similar to iterative NAP
[8]. The parameters are optimized by repeating three steps:
Step 1. When V; and U; are fixed, X,, is solved by taking
derivation with respect to X,

M
> ZiUf0) X (VY
i=1

Let A; = UU;, B; = (V!V;),and C = Zi\il U!F,V;, the

] =

n =1

>

Ui Xn

g

M=

n=11

Vi) = 13)

i=1

7196

above equation is

M
Z ZiAiXnB; =C
i=1
M
2 Zi(Bi ® A;)| vee(X,,) = vec(C)
i=1
M -1
vec(X, Z Z;(B; @ A; )} vec(C)
i=1
14
where [-] 71 is the pseudoinverse and ® is Kronecker product.

Step 2. When V; and X, are fixed, Uj; is solved as follows

N -1

> (XWViViXL)

n=1

N
_ 1 _
== (FVX! 1
Ui= 2:1( ViXh) (15)

Step 3. When U; and X, are fixed, V; is solved as follows
—1
(16)

3.3. Application

From the above derivation, we present the realization of the
i-matrix in this subsection. The estimation procedure of U,,
V; and %; are given in Table 1. Once the global parameters
are well estimated, an utterance is represented by an i-matrix
with Equation (14). The decision function is the cosine kernel
function

vec()_( Yivec(Xy)
o)/ vee(Xp)tvec(Xp)

a7

VEC

\/ VCC

where subindexes a and b denote two arbitrary utterances.

3.4. Discussion

1. Different from the standard procedure of an i-vector, the X3;
in the i-matrix is estimated by collecting statistics rather than
solving an equation, because there is no analytic expression
for it. The computation of ¥; is as follows

Ei = N T ! [Z Z Yubm,i Otn

don=1 Ztn=1 Yubm,i (O, ) L=t th=1

(O,

— Hubm,i — UzXant) * (Otn

— Hubm,i — UanV;t):|

(18)
2. The first term of Equation (8) is not optimized for the dif-
ficulty of solving equation. However, once the Equation (12)
is minimized, the first term of Equation (8) is reduced accord-
ingly in a loose sense. This is also an awkward thing in the
i-matrix.



Table 1. Estimation procedure of X,,, U;, V; and ;

Initialization: U; and V; are randomly initialized.

Procedure:
1. Estimate ¥; on the training database with X,, = 0.

2. Collect statistics Z,, ;, F, ; and S, ; with Equation (10).
3. Compute X,, with Equation (14).

4. Update U; with Equation (15).

5. Estimate ¥; with updated U;.

6. Collect statistics Zy, ;, Fy, ; and S, ; with Equation (10).
7. Compute X,, with Equation (14).

8. Update V; with Equation (16).

9. Estimate >; with updated V.

10. Goto Step 2 if not terminated.

Termination: 3 ~ 6 iterations.

3. We solve U;, V; and X, out rather than U;, V; and X,,.

4. The training procedure of the UBM in an i-matrix is the
same as the standard procedure [5].

5. We make no prior assumption of X,.
method is a non Bayesian method.

6. We can also convert a short-time cepstral feature matrix
O, into a vector vec(O,, ) and build an i-vector system ac-
cordingly. However, this method violates the intrinsic struc-
ture of O, and introduces lots of nuisance information by the
vec(+) operation. Besides, it brings more computation burden.

The presented

4. EXPERIMENTS

4.1. Databases

Experiments were carried out on the common condition 7 of
NIST SRE 2008 core task (c7-08). The NIST SRE 2008 core
task is named short2-short3. There are 8§ common condition-
s. The c7-08 task is the telephone-telephone-English (tel-tel-
English) condition, containing 1265 models, 1567 test seg-
ments and 17761 trials. We used previous NIST evaluation
data and Switchboard corpus (SWB) to estimate our system
parameters. Table 2 summarized the data we used .

Table 2. Data corpus for the UBM, 7', V,U,% and LDA

SWB SRE04 SREO5 SRE06
UBM X X
V.Ux X X X X
LDA X X X

SWe didn’t use any normalization, e.g. ztnorm, snorm.
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4.2. Configuration

Speech/silence segmentation was performed by a G.723.1
VAD detector. A 13-dimensional MFCC was extracted, with
appended delta and acceleration coefficients. 39-dimensional
vectors were subjected to feature warping. UBMs with 1024
Gaussian components were gender-dependent. The rank of
T, U and V were 600, 300 and 50 respectively. The number
of adjacent features was K = 11, the step was 3 and the
iteration number was 5. Length normalization was applied.
The decision function was the cosine kernel. The EER (E-
qual error rate) and MDCF (Minimal detection cost function
defined by NIST SRE 2008) were adopted as performance
measurements.

4.3. Results and Analysis

Table 3 presents the experimental results on the c¢7-08 task.
From the table, we conclude that the i-matrix outperforms the
i-vector. The average EER and MDCEF are reduced by 5.60%
and 7.87% respectively when cosine kernel is applied directly.
And the average EER and MDCF are reduced by 4.82% and
5.12% respectively when linear discriminant analysis (LDA)
is followed [9]. We attribute the performance improvement to
the use of temporal information.

Table 3. Experimental results on the ¢7-08 task

<7-08 Female Male
EER(%) MDCF EER(%) MDCF
ivec 7.20 0.299 6.38 0.278
imat 6.80 0.267 6.02 0.264
ivec-LDA 3.73 0.160 3.15 0.130
imat-LDA 3.56 0.151 2.99 0.124

5. CONCLUSION

In this paper, we present an i-matrix to address text-independent
speaker recognition problem. The i-matrix, which is based on
short-time cepstral feature sequence, takes advantage of both
cepstral feature distribution and temporal information. This
is the main reason for the system performance improvement.
The derivation of the presented i-matrix is from the convex
of logarithmic function and the parameters are estimated by
an iterative method. A simple experiment was carried out on
the common condition 7 of NIST SRE 2008 core task. Ex-
perimental results demonstrate the effectiveness of this novel
approach. Further work involves the selection of K, analysis
of computation burden and proof of convergence.
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