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ABSTRACT

We apply methods for selecting subsets of dimensions
from high-dimensional score spaces, and subsets of data
for training, using submodular function optimization. Sub-
modular functions provide theoretical performance guaran-
tees while simultaneously retaining extremely fast and scal-
able optimization via an accelerated greedy algorithm. We
evaluate this approach on two applications: data subset se-
lection for phone recognizer training, and semi-supervised
learning for phone segment classification. Interestingly,
the first application uses submodularity twice: first for
score space sub-selection and then for data subset selec-
tion. Our approach is computationally efficient but still
consistently outperforms a number of baseline methods.

Index Terms— feature selection, Fisher kernel, acous-
tic similarity, graph-based learning, submodularity

1. INTRODUCTION

Generative acoustic score spaces, such as the Fisher score
space [ 1], are constructed by training generative models on
acoustic data and taking the derivative of the log-likelihood
of the data with respect to the parameters of the models.
They have found multiple uses in speech processing, in-
cluding acoustic event classification [2], acoustic-phonetic
classification [3], segmental minimum Bayes risk decod-
ing [4], or speaker verification [5, 6]. Generalizations of
Fisher score spaces for speech were explored in [7]. The
dimensionality of these score space is often very high,
however, and depend on the number of model parameters
(which can be many millions). Many of these dimensions
might be uninformative or redundant; it is hence desirable
to select the best subset of features in some computation-
ally feasible way. Previously proposed feature selection
methods either do not scale to very high-dimensional fea-
ture spaces and/or large data sets, or they do not provide
theoretical guarantees about their performance.

In this work, we present a feature selection method
based on submodular function optimization that both pro-
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vides theoretical performance guarantees and also scales
easily to high-dimensional spaces. The method is applied
to subselecting high-dimensional Fisher vectors for the
purpose of computing O(n?) pairwise similarity scores
between variable-length acoustic segments. These scores
are then themselves used for two tasks: (a) to instanti-
ate submodular functions for selecting subsets of training
data; and (b) for semi-supervised graph-based learning for
phonetic segment classification. Thus, in the first case,
submodular functions are used twice (for both feature and
data subset selection); in the second case they are used for
feature subset selection only.

We demonstrate that our method outperforms stan-
dard baseline feature selection methods using mutual in-
formation between feature and class variables. In fact, our
method is applicable to any feature selection problem and
thus has broad implication for any pattern recognition task
that involves high-dimensional feature spaces.

2. GENERATIVE SCORE SPACES

Given a sequence of acoustic feature vectors X and a
generative model (such as an HMM) with parameter vector
0 that models the underlying generation process, the Fisher
score vector Ux is the vector of derivatives of the log-
likelihood of X with respect to the parameters 6:

U% = VologP(X|0) (1)

When several models are involved, the resulting vectors of

derivatives are stacked to form the total Fisher score space:

Ux = (U (UR)T, . (U))T @

To compute a dissimilarity between two acoustic sequences

i and j we take the dot-product of the Fisher score vectors,
normalized by F' the Fisher information matrix:

K;; =UF'U;. 3)

Other dissimilarity scores are also possible to compute, for

example a norm (e.g., dij = ||U; — Uj||, for some non-

negative g). These can also be converted into similarity

measures [8].
Depending on the number of models and parame-
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ters per model, Fisher score vectors can be very high-
dimensional. Many of the dimensions might either carry lit-
tle information or be redundant with other dimensions. Pre-
vious applications have either selectively used the deriva-
tives of only some parameters, such as only mean vectors
or mixture weights of Gaussian mixtures; or they have
applied binary compression [9]. A useful goal, therefore,
is to select a subset of dimensions that retain as much
informative as possible but that are non-redundant.

3. BACKGROUND

Submodular functions are a class of discrete functions
that have the property of “diminishing returns.” Given
a finite set V, f : 2¥ — R is said to be submodular if
F(AU{v}) = f(A) = f(BU{v}) — f(B) holds VA C
B C Vandv ¢ B. In words, the incremental value (or
“gain”) of element v decreases as the context in which v is
considered grows from A to B. Powerful guarantees exist
for specific subtypes of submodular function optimization.
For instance, a function is monotone submodular if f(A U
{v})— f(4) > f(BU{v})~ f(B),YAC B,v€ V. In
such case, the problem of maximizing f(.S) subjected to a
cardinality constraint can be approximately solved using
a simple greedy algorithm that easily scales to extremely
large data sets [10]. Submodular functions have already
yielded superior results in various practical settings, such
as environmental monitoring, activity recognition, sensor
placement and information extraction [11], and document
summarization [12].

Herein, we formulate our feature subset selection
problem as monotone submodular function maximization
subject either to a cardinality or to a knapsack constraint:

argglgaé({f(S) :¢(S) < K} )

where V is the set of features, K is max number of features
to be selected, c(-) > 0 is a feature cost (if ¢(S) = |95,
this constitutes a cardinality constraint, and if ¢(S) =
> scs c(s) then this is a knapsack constraint), and the sub-
modular function f(-) valuates the selected feature subset.
In this work, we evaluate two submodular functions
each instantiated from O(n2) pairwise similarity scores —
both, it turns out, significantly outperform standard base-
line feature selection methods using mutual information
between feature and class. The first objective is the unca-
pacitated facility location function defined as
i(8) = ; max wi j, )
where w; ; is a similarity between feature ¢ and j — this
function valuates S by choosing and then accumulating
for each ¢ € V a single representative’s similarity within
S that is closest to 4.
A second function we evaluate is the “saturated cover-

age function”, defined as:

£2(8) = min{Ci(S), BC:(V)}, (©6)
i€V

where C;(S) = 3 5 wi,; measures the degree that i is
“covered” by S. 8 € [0, 1] is a hyperparameter that deter-
mines a global saturation threshold. The minimum within
each term keeps features from being over-represented by
subset .S. Both objectives are monotone submodular func-
tions, hence, the formulated optimization problem for fea-
ture selection can be solved near-optimally using a greedy
algorithm. In fact, submodularity has another advantage,
namely an accelerated greedy algorithm [13] having com-
plexity O(K log |V'|), allowing the scaling to very high-
dimensional cases. A traditional greedy algorithm having
complexity O(K|V|) would not be as scalable to very
large sizes.

Note that both f; and f> have been successfully used
for extractive document summarization in the context of
learning mixtures [14], and f; has been used for training
data subset selection [15] with cardinality constraints. The
novelty of this present work is as follows: fi has never
before been used for training data subset selection under a
knapsack contraints (we show that they both perform well).
Moreover, never before has submodular subset selection
been used simultaneously for acoustic score space selec-
tion and training data subset selection (we show this also
performs quite well). Lastly, submodular subset selection
for acoustic score space selection to produce similarity
scores in a graph-based learning system is novel to this
work as well — we show state-of-the-art results here as
well.

4. TASKS, DATA AND BASELINE SYSTEMS

We evaluate our methods on TIMIT data. Two applications
are considered: 1) data subset selection for phone recog-
nizer training, and 2) semi-supervised learning for phone
segment classification. The first application uses submod-
ular optimization twice (for score space subset selection
and for utterance subset selection for training analogous
to [15]). Both applications make use of similarity scores
between variable-length segments and necessitate the com-
putation of the Fisher kernel.

4.1. Data Subset Selection

The goal of our first task is to identify a subset of the train-
ing data that provides as much information about the full
data set as possible while being much smaller. We use a
training set of 4620 utterances, the TIMIT core test set of
192 utterances, and 200 utterances from the remaining test
set as development data. The data is preprocessed into 39-
dimensional MFCC vectors extracted every 10ms. In order
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to generate Fisher score vectors for the data subset selec-
tion task we train 16-component diagonal-covariance Gaus-
sian mixture HMMs for each of the 48 phone classes in
TIMIT. Derivatives are taken of all mean and variance vec-
tors as well as the mixture weights, resulting in a score vec-
tor dimensionality of 186,577. Mean and variance normal-
ization is applied to the Fisher score vectors to handle the
different dynamic ranges of different dimensions. We then
construct all 4620 x 4620 similarities between all pairs of
training utterances. We use the facility location function
with these similarities to select 2.5%, 5%, 10%, 20%, 30%,
40% and 50% and of the data (measured as percentage of
non-silence speech frames). 3-state monophone HMMs
with N-component Gaussian mixtures are trained for each
of the 48 phone classes on the full training set as well as
the subsets. /V is optimized based on the size of the train-
ing subset (we set N = 4,8, 8,16, 32, 32, 32 respectively
for each setting). Recognition accuracy is computed after
mapping the 48 phones to 39 classes as described in [16].

4.2. Segment Classification

The second task consist of classifying the segments in the
TIMIT core test set using the time boundaries given by the
annotated labels (i.e. it is distinct from phone recognition).
For this task we use a training set without the sa sentences
(= 3686 utterances), the core test set, and a development
set of 210 sentences. We use the standard phone set of
48 phones for training and collapse them to 39 classes
for evaluation. Glottal stop segments are excluded. The
total number of segments for training, development and
testing is 121385, 7416, and 6589, respectively. Speaker-
dependent mean and variance normalization of the acoustic
features was applied. We use two semi-supervised graph-
based learning approaches, label propagation (LP) [17]
and measure propagation (MP) [18], both of which use
pairwise similarity scores and were previously used for
frame-based phone classification [19]. In this paper, we
classify variable-length acoustic segments and thus use
Fisher kernels. We utilize the Fisher scores generated by
a baseline HMM system, comprised of 48 3-state HMMs
with 16 Gaussian mixture components with diagonal co-
variance matrices per phone class. The dimensionality
of the score vectors is 182,017. Our key goal (which we
have achieved below) is to demonstrate the viability of sub-
modular feature selection to improve Fisher kernel based
similarity measures. In order to compute the Fisher kernel
we stack the derivatives of all Gaussian components into
one vector per segment; Eq. (3) is then computed on these
vectors. We do not use the full Fisher information matrix
to reduce computational demands. We also normalize the
values as: Ki; = Kij/+/KiiK;;. Using this similarity
measure, 10-nearest neighbor graphs were constructed for

use by the two graph-based learning algorithms.
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Fig. 1. Phone accuracy rates for random subset selection
and submodular subset selection using the entire Fisher
score space. All (100%) of data (red), facility location
(blue), and average (of 100) random selection (green).

5. EXPERIMENTS AND RESULTS

For feature subset selection, we let V' = {v1,v2, -+ ,un}
be the set of all features in the Fisher score vectors. We
first prune away an initial feature set P such that Vi €
P, I(v;; C) < 7 where I(v;; C) is the mutual information
between feature ¢ and the class variable C, ranging over
all phone classes, and 7 is a cutoff threshold (0.01 in our
case). Then we build a fully connected graph using the
remaining set of features V' \ P. In the data selection task,
the remaining set has 90,422 features; in the classification
task, it has 73,978 features. Graph edges are weighted with
the mutual information I (v;;v;) score for pairs v;, v; of
features. We then select subsets of this set using the accel-
erated greedy algorithm using either the facility location
or the saturated coverage functions. We compare against
the baseline method of computing mutual information be-
tween only the feature and class variable, ranking features
by that score and selecting the top N features. This pro-
cedure is only modular and does not allow for any direct
interaction between the features (unlike submodular func-
tions which do). In order to compute mutual information
on continuous Fisher scores, they are first quantized into
50 equal-width bins.

For the data subset selection task we compare three
experimental conditions: (a) the full Fisher vectors are
used for constructing the utterance similarity graph; (b)
the Fisher vectors are reduced by modular feature selection;
(c) the Fisher vectors are reduced by submodular feature
selection. For the reduced vectors we used 1k, 2k, 5k,
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25p [ 5p [ 10p [ 20p [ 30p |

Tks | 1.99% | 2.07% | 2.48% | 1.48% | 1.93%
Tkem | -0.20% | -0.49% | 1.48% | 0.52% | 1.52%
%ks | 0.11% | 1.60% | 2.33% | 1.46% | 197%
2km | 0.04% | -059% | 045% | 124% | 145%
Sks | 084% | LI15% | 2.64% | 1.12% | 137%
5k-m | 1.06% | 1.46% | -041% | -0.30% | -0.18%
T0ks | 521% | 3.05% | 3.08% | 1.16% | 2.84%
0k-m | 2.79% | 1.29% | 1.03% | 097% | 092%
20ks | 645% | 336% | 434% | 2.58% | 1.46%
20k-m | 3.77% | 2.34% | 3.61% | 0.19% | 1.16%
50ks | 479% | 521% | 392% | 2.19% | 2.71%
50km | 255% | 3.85% | 248% | 138% | 2.11%
[ all [ 521% | 496% | 404% | 2.92% | 2.38% |

Table 1. Using the saturated coverage function to select
features in Fisher kernel vectors. In 28 out of 30 settings,
submodular feature selection leads to a greater improve-
ment over the baseline, and even outperforms it in 5 set-
tings.

400 800 2k 4k 10k

LP MP LP MP LP MP LP MP LP MP

mod | 42.07 | 42.95 | 63.83 | 64.23 | 62.80 | 64.09 | 68.05 | 68.99 | 63.48 | 64.30

sub | 66.46 | 67.16 | 69.43 | 70.45 | 68.87 | 69.25 | 69.24 | 69.48 | 67.04 | 67.14

Table 2. Accuracy rates for segment classification, with
modular (mod) and submodular (sub) feature selection.
The baseline model (monophone HMMs, without graph-
based learning) has a classification accuracy of 68.02%.
Bold-face numbers are significant (p < 0.05) improve-
ments over the modular MI-based method.

10k, 20k, and 50k. For each feature subset we re-build
the graph using the reduced feature set, and then follow
the accelerated greedy procedure mentioned above. The
comparison of relative improvements over the random
selection baseline is shown in Table 1 (Figure 1 shows
absolute results when the entire score space is used). We
see that in all these cases the submodular feature selection
method outperforms the modular feature selection method
in almost all cases and even outperforms the full feature
vector under some conditions.

Table 2 shows the results of the segment classification
experiments. Again, we compare submodular feature selec-
tion against modular selection. Here, the baseline HMMs
have an accuracy of 68.02%. With only 400 features, the
modular MI-based selection leads to a significant drop in
performance, resulting in ~ 42% classification accuracy;
however, using the top 400 features selected from the sub-
modular method we achieve ~ 67%. With 800 features
selected by the submodular method, we obtain a signif-
icant improvement over the baseline model with almost
an order of magnitude fewer features. This shows that
our method based on submodular optimization is highly

effective in selecting the most useful features. Importantly,
the selection procedures can be done quite rapidly.

6. RELATED WORK

Numerous methods have previously been proposed for
feature selection. Two previous methods related to ours
are correlation-based feature subset selection [20] and
maximum-relevance-minimum-redundancy [21]. Both of
them aim at selecting subsets that provide information
about the class while minimizing the redundancy among
features in the subset. We attempted to compare against
[21] (using the C++ implementation provided by the au-
thors) and [20] as implemented in the WEKA package.
However, both methods have quadratic complexity and use
traditional (non-accelerated) greedy algorithms for opti-
mization and do not scale to feature sets of our size. Since
neither of the two methods use a monotone submodular
objective, the accelerated greedy algorithm [13] is inappli-
cable.

7. CONCLUSIONS

We have presented a novel submodular feature selection
method that scales to high-dimensional spaces and pro-
vides optimality guarantees. On both a data subset se-
lection and a segment classification task it was shown to
outperform baseline modular feature selection; in some
cases it even outperformed the full feature vector. The
method is general and applies to large feature sets in a
variety of application; it is not restricted to acoustic score
spaces. Future work will involve further applications on
a variety of big data sets and the investigation of other
submodular functions.
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