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ABSTRACT 

 
In this paper, the ability of human listeners to recognize tones 

from continuous Mandarin Chinese is evaluated and compared 

to the accuracy of automatic systems for tone classification and 

recognition. All tones used for experimentation were extracted 

from the RASC863 continuous Mandarin Chinese database. 

The human listeners are native speakers of Mandarin and the 

automatic methods consist of tone classification using neural 

networks and tone recognition using Hidden Markov Models.  

Features used for the automatic methods are a combination of 

spectral/temporal features, energy contours, and pitch contours. 

When very little context is used (i.e., vowel segments only) the 

human and machine performance is comparable. However, as 

the context interval is increased, the human performance is 

much better than the best machine performance obtained. 

 

Index Terms— tone recognition, continuous Mandarin 

Chinese, human listeners, neural networks, HMMs 

 

1. INTRODUCTION 

 
Typically a Mandarin Chinese syllable contains 3 acoustic 

elements: the syllable initial, the syllable final and the tone. Tones 

are important characteristics of Mandarin Chinese for conveying 

lexical meaning and distinguishing different characters. Thus tone 

recognition (especially for the explicit tone modeling technique) is 

required for automatic recognition of Mandarin. 

Most literature on machine recognition of tones is based on 

syllables spoken in isolation [1] or high quality speech such as TV 

broadcast news [2]. This is likely due to the fact that recognizing 

tones from syllables extracted from conversational speech is 

difficult even for humans: some linguistic research suggests that 

human listeners require long duration acoustic cues in order to 

recognize tones correctly [3].  The perception of tones also varies 

depending on the listener‟s native experience with the tonal system 

of his/her own language [4].  

This paper explores the recognition ability of humans for 

lexical tones in light-accented continuous Mandarin Chinese for 

different conditions. Then two automatic methods for monotone 

recognition will be discussed and compared with both human‟s 

accuracy and other tone modeling techniques [5] [6].  

The Shanghai region data from RASC863 (Regional 

Accented Speech Corpus) [7] was utilized for all experiments 

reported in this paper, since it provides  phonetically labeled 

transcriptions and the accent from  speakers in this region is 

considered the “lightest” of all 4 regions included in the RASC863 

database.  

 

2. TONE RECOGNITION BY HUMAN LISTENERS 

 

2.1. Test Participants 

 
3 male and 3 female college students whose native language is 

Mandarin Chinese were selected as the experimental subjects. 

All participants were trained and tested by the first author of 

this paper and they each appeared to have a good understanding 

of lexical tones in Mandarin (High, Rising, Dipping and 

Falling) and were able to correctly identify these tones from 

careful listening of well pronounced tones. 

Note that throughout this paper, for all experiments, the 

neutral tone was not considered since it occurs relatively 

infrequently.  

 

2.2. Objective 
 

The main object for this experiment was to investigate the 

capability of native listeners to recognize tones, for each of four 

cases, with varying amounts of context (i.e., length). For each 

case, listeners were given approximately 800 speech segments 

to listen to and were asked to identify tones, based on a single 

playback of each speech sample.  The segments (approximately 

3200 in total) were directly extracted from the continuous 

speech data portion of the RASC863 database. The type of 

speech segment for each case is listed in Table 1. 

Table 1. Syllable segment cases 

Case  Description Label in this paper 

Case 1 Syllable final (vowel part only) Vowel 

Case 2 Complete syllable (consonant and vowel) 1 SLB 

Case 3 Two syllable segment 2 SLB 

Case 4 Three syllable segment 3 SLB 

 

The syllable segments for Cases 3 and 4 are consecutive 

syllables extracted from random positions in a sentence.  In 

some cases the syllable strings were “words,” but not in all 

cases, as discussed later.    

 

2.3. Experimental Protocol and Test Software 

 
Listeners used a PC for playing sound tokens and recording 

their answers with interaction with the computer via a Graphic 

User Interface (GUI) as shown in Fig. 1. Listeners simply 
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marked tone type (High, Rising, Dipping and Falling) 

according to what they just heard.  Listeners were comfortably 

seated and used high quality headphones. 

 

 

Fig. 1. GUI for listening experiment 

Listeners were only allowed to listen once to each token, 

but could decide when to begin the playback of each token.  

Typically listeners required about 90 minutes for each of the 

four cases.     

 

2.4. Listening Test Results and Analysis 

 
2.4.1 General results 

The overall tone recognition results from the 6 listeners 

(labeled as „M1‟ to „F3‟, with M for male, and F for female)  

and for the 4 cases (labeled  „Vowel‟ to „3 SLB‟ ), are given in 

Table 2. 

The average recognition rate for multiple syllable cases 3 

and 4 is noticeable higher (78.2% and 79.5%) than for the 

single syllable cases 1 and 2 (61.9% and 58.0%)  

Table 2. Tone recognition accuracies for human listeners 

(%) M1 M2 M3 F1 F2 F3 Avg. 

Vowel 59.4 51.1 70.0 67.3 59.9 63.6 61.9 

1 SLB 58.7 53.8 64.7 53.6 57.4 59.8 58.0 

2 SLB 75.7 74.4 81.3 80.8 80.3 76.8 78.2 

3 SLB 80.7 67.8 86.1 83.1 80.8 78.8 79.5 

Avg. 68.6 61.8 75.5 71.2 69.6 69.8 69.4 

 
2.4.2 Confusion matrix for tones based on “Vowel” only 

For the most part, the tone is only associated with voiced 

speech. Thus most research on automatic Mandarin 

recognition, either implicitly or explicitly, models tones based 

on acoustic features that are extracted from vowels only. 

A confusion matrix was generated from the tone recognition 

based on the case “Vowel,” and is given in Table 3Table 3 as 

percentages.  The High tone is recognized most accurately, 

whereas the Dipping and Rising tones are recognized least 

accurately. These results are consistent with [3], where it was 

argued that shorter acoustic cues are more suitable for 

recognizing High tones and Falling tones. 

Table 3. Confusion matrix for tones based on vowels only 

(%) High Rising Dipping Falling 

High 70.4 10.9 5.4 13.3 

Rising 21.7 59.6 8.6 10.2 

Dipping 16.9 25.9 44.2 13.0 

Falling 18.4 7.2 11.5 63.0 

 
2.4.3 Tone Recognition in “words” vs. “not-a-word” segments  

For the case of 2 SLB, listening results were sorted according 

to whether or not 2 SLB segments formed a word. Due to the 

random way that each segment was selected from a sentence, a 

syllable pair may or may not form a lexical word. (Note that 

most Chinese words are comprised of 2 syllables). In the data 

used, approximately half the two syllable segments were words, 

and half were not linguistically meaningful. As expected, when 

recognizing tones from segments which are “words,” the 

linguistic knowledge of the listeners helps them to recognize 

tones much more accurately than when the segments are “not-

words.” 

        Tone recognition results of listeners for syllables in words 

or not-words are shown in Fig. 2. 

 

Fig. 2. Tone recognition accuracies of listeners for syllables in 

words or not-words 

 
2.4.4 Gender effects  

Results were also sorted by gender of both listeners and 

speakers and averages given in Table 4. These results do not 

show any large gender-dependent effect for either listener or 

speaker.  For the small group of listeners used, the females 

were approximately 5% more accurate at tone identification 

than males. However, the small number of listeners used makes 

it doubtful that this difference is statistically meaningful. 

Table 4. Tone recognition accuracy sorted by gender 

Spks/Lsns(%) Male (Lsn) Female(Lsn)  Average 

Male (Spk) 75.1 78.5 76.8 

Female (Spk) 75.8 81.6 78.7 

Average 75.4 80.0 78.2 

 

2.4.5 Recognition for each syllable in a “3 SLB string” 
As shown in Table 5, the results for the 3 SLB case have 

highest overall accuracy for the middle syllable. This is 

probably because the middle syllable has both right and left 
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context, whereas the first syllable has only right context and the 

final syllable has only left context.   

Table 5. Tone recognition accuracy for 3 SLB case 

 

3. TONE RECOGNITION USING AUTOMATIC 

SYSTEMS 

 
Because tones exhibit strong co-articulation phenomenon, most 

researchers have modeled tones explicitly in a bi-tone structure 

[5] or implicitly with other phones [6]. However, it is very 

difficult to perform phonetic level tone recognition in 

continuous speech this way because it is very hard to identify 

co-articulation boundaries. Therefore, in our work we classified 

or recognized tones as “monotones,” essentially using 

techniques that would be used for phone classification and 

recognition in English, except there are only the four tones, and 

the features selected for the classifier and recognizer were 

selected to indicate changes in spectral energy concentrations 

over time.   

 

3.1. Speech Data  

 
Both automatic methods utilized the phonetically-balanced 

subset from RASC863 (e.g. All sentences that begin with the 

letter „s‟ and which have phonetic transcriptions), which 

includes a total of 2209 sentences from 20 speakers. (1548 

sentences for training and 661 sentences for test).  

 

3.2. Acoustic Features 

 
3.2.1 DCTC/DCSC features 

Spectral/temporal features have shown to be effective in past 

research on phonetic recognition for continuous English [8].  

Although pitch (F0) contours are most typically used as 

acoustic correlates for tone (and are used in this study),  

inspection of the low frequency parts of spectrograms,  shows 

that the tonal characteristics are often apparent from the general 

shift in energy concentration over time,  especially in the low 

frequency (below 1000 Hz)  part of the spectrogram. Fig. 3 

illustrates this idea. 

As used in our work on phonetic recognition [8], Discrete 

Cosine Transform Coefficients (DCTCs) and Discrete Cosine 

Series Coefficients (DCSCs) were used as features for encoding 

the general shape of the spectrum. Experimentally, it was found 

that a small number of DCTC/DCSC terms (such as 6 DCTCs, 

each represented by 4 DCSCs), extracted from a low frequency 

range (75~700Hz) were most effective.  

 

3.2.2 Pitch contour features 

The pitch contour is widely accepted as the most effective 

feature for tone modeling ([1] [4] [5] [6] [7]). The research 

reported in this paper made use of the fundamental frequency 

tracking algorithm called YAAPT [9] for pitch. Pitch contours 

were represented with Discrete Cosine Series Coefficients 

terms (4-5) in the same manner as DCTC trajectories are 

encoded (i.e. as in [8]). The black dots placed on the 

spectrograms shown in Fig. 3 are pitch tracks computed by 

YAAPT. 

 

 
 

 
 

 

Fig. 3. Spectrograms and pitch for 4 tonal syllables. 

 

3.3. Classification Using Neural Networks 

 
For these experiments, segments were extracted from the data 

base using the supplied labels for vowels. Segment durations 

were varied from 100 ms to 500 ms in steps of 50 ms. For each 

segment length, DCTCs and/or pitch was computed and then 

represented with DCSC terms. Three conditions were tested: 

a. DCTCs + Pitch: 4 DCTCs encoded with 5 DCSC 

terms each, pitch encoded with 5 DCSC terms (25 

total features) 

b. Pitch only: pitch feature encoded with 5 DCSC terms 

(5 features in total) 

c. DCTCs only: 6 DCTCs encoded with 4 DCSC terms 

each, resulting in a total of 24 features. 

 

Fig. 4. Tone accuracy based on neural network classification 

These features were classified with a neural network 

classifier having two hidden layers (100 hidden nodes, 25 
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hidden nodes) and an output layer of 4 nodes. Test results, for 

each of the three features sets, as a function of segment length 

are shown in Fig. 4. The confusion matrix is given in Table 6. 

Table 6. Confusion matrix for neural network classification 

(%) High Rising Dipping Falling 

High 78.2 4.9 6.5 10.4 

Rising 6.2 75.5 5.7 12.5 

Dipping 19.1 13.8 61.6 5.5 

Falling 14.7 15.6 4.2 65.5 

 

3.4. Recognition Using Hidden Markov Models 

 
The other automatic method is a recognizer built with the HTK 

toolkit (Ver3.4). This toolkit allows complete flexibility in 

terms of the number of mixtures, number of states, types of 

transitions, and provides for language modeling. 

5 tones (High, Rising, Dipping, Falling and Neutral), 

silence, and all syllable initials (consonants) were modeled by 7 

left-to-right 3-state HMMs with no skip states allowed. A 

bigram language model was also built from the statistical data 

of all transcriptions. The feature sets tested were: 

a. 48 DCTC/DCSCs: 8 DCTCs each encoded with 6 

DCSCs 

b. DCTC/DCSCs + Pitch: 40 DCTC/DCSCs (8 DCTCs 

× 5 DCSCs) + Log energy + Pitch + Pitch‟s 6 DCSCs 

As shown in Table 7 and 8, the best results were obtained 

with 48 acoustic features combining DCTC/DCSC and pitch 

features, modeled 48 Gaussian mixtures. All DCSCs were 

computed using a block length of 200 ms. Note that several 

other conditions were also tested; results are given for the 

“best” case found to date.  

Table 7. Best result for the HMM recognition 

 

 DCTC/DCSCs DCTC/DCSCs + Pitch 

Rec. Rate (%) 53.7 60.3 

Table 8. Confusion matrix from HMM recognition experiment 

(%) High Rising Dipping Falling Neutral 

High 81.0 7.0 3.1 6.8 2.2 

Rising 10.0 69.8 9.7 5.6 4.9 

Dipping 4.3 9.6 71.1 7.7 7.3 

Falling 8.0 3.3 5.9 76.7 6.1 

Neutral 5.0 5.0 10.4 8.3 71.4 

 

Note that the results in Table 7 are based on 7 categories 

whereas the results in Table 8 are based on 5 tone categories 

only, hence the difference of the accuracies. 

 

4. CONCLUSIONS 

This paper compares the ability for recognizing tones from 

continuous Mandarin Chinese between human native speakers 

and two  automatic methods. 

The experimental results show humans need context 

to recognize tones very accurately. Nonnative speakers find this 

task nearly impossible. Without context, machine 

recognition and human recognition have about same 

accuracy, but different patterns of errors. 

The most interesting and potentially significant result of 

this work is that reasonably accurate tone classification and 

recognition can be obtained without using a pitch feature. Best 

tone classification accuracy (71.7%) was obtained using both 

the spectral/temporal features and pitch trajectories.    

Similarly, for the more difficult recognition case,  most 

accurate results were obtained with the combined feature  set 

versus either set alone (approximately 5%  accuracy 

improvement with pitch added to DCTC/DCSC  features). 

Note that “raw” pitch was used for all pitch features.  

Presumably, as noted in other studies, higher accuracies would 

have been obtained if the pitch contours had been normalized to 

reduce speaker dependent effects. 
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