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ABSTRACT 

In this paper, we propose an iterative refinement framework for 
semi-supervised accent detection, where the accent labels of 
training corpus were generated by the user's self-judgement with 
poor accuracy. Firstly, we get the initial accent detection models 
based on cross-validation (CV) method, and then select the pure 
accent samples iteratively based on cost criterion derived from 
neighbor function, which is sensitive to the accent class purity. 
SVM based accent recognition approach is applied as the basic 
accent detection method which assumes that certain phones are 
realized differently across accents. Finally, we update the accent 
specific acoustic models via adaptation based on the detected 
specific accent data. The efficiency of the proposed method is 
demonstrated with experiments on English dictation database. 

Index Terms— Accent detection, cross-validation, semi-
supervised method, neighbor function 

1. INTRODUCTION 

One of the key challenges in practical automatic speech 
recognition (ASR) is to improve the recognition accuracy on 
accented speech. Speakers with accents differ from native speakers 
and from each other in many dimensions of the linguistic spectrum, 
including morphological, lexical, syntactical, and phonological 
ones. Cross-accent experiments in [1] show that accent problem is 
very dominant in real speech recognition application. A common 
problem in speech recognition of accented speech is that there is 
not enough training data for training an accent-specific or a 
speaker-specific recognizer.  

Several techniques for accent/dialect detection have been 
successfully studied. Gaussian Mixture Models (GMMs) and 
Hidden Markov Model (HMM) based system have been widely 
applied in both practice and literature for accent identification task 
[2, 3, 4, 5], and discriminative training procedure can further 
improve the performance compared with maximum likelihood 
training [6, 7]. Some previous approaches used on the speaker 
verification task, such as Phone Recognition and Language Model 
(PRLM) [8, 9, 10], and Gaussian Mixture Models – Universal 
Background Model (GMM-UBM) with shifted delta cepstral [11] 
have been shown to be effective in accent/dialect recognition. In 
recent work [12, 13, 14, 15], researchers have shown that phone-
type-based SVM kernel approach that relies on the hypothesis that 
certain phones are realized differently across dialects achieves 
state-of-the-art performance for multiple dialect and accent 
detection tasks. Usually, in the above work, we need collect pure 
accent data to train detection models, and then use them for accent 
identification. However, in our application, the field speakers 
claim their accents when applying speech application engine, 
which are not reliable. So we need to start with unreliable user 

claimed accent data, and then refine the accent detection model 
iteratively, finally we can re-label the accent training set and 
further update the accent specific acoustic models. Therefore, we 
call this process semi-supervised accent detection and modeling 
method. We propose a flexible semi-supervised framework which 
consists of iterative accent data purification and modeling using 
the cost criterion based on a neighbor function, which can 
effectively evaluate the accent class purity. The main benefit of 
this work is that we can get effective accent detection model and 
then we can collect large amount of accent data automatically for 
accent speech recognition with minimum human effort.  

The rest of the paper is organized as follows: Section 2 
describes the data set information. Section 3 introduces the SVM 
based accent detection approach. Section 4 describes the method 
and framework of semi-supervised accent detection. Section 5 
presents the experimental results. Section 6 concludes the paper. 

2. DATA SETS 

Three American English accent classes (Native/Southern/Hispanic) 
as training data were used in the experiments, all of which were 
real user data collected from an English dictation system at 
different periods of time. The native accent data were composed of 
412 speakers in 52.4 hours; the Southern accent data were 
composed of 3303 speakers in 504.8 hours; and the Hispanic 
accent data were composed of 580 speakers in 90.9 hours. The 
time duration of each speaker in these data sets is from 2 minutes 
to 100 minutes. The field accent labels come from users’ own 
selection, which are not very accurate. Some users think they have 
an accent but actually they don’t or their accents are very mild. So 
using those field data to train the accent acoustic models (AM) is 
not very reliable. According to our manually random checking, 
only about 50% of field labels match human labels. From the 
further analysis, we see that most of the confusions in both 
Southern/Hispanic data are against native.  

Two sets of test data were used in the experiments. Test set 1 
is used for accent detection evaluation including 3 accent subsets: 
Native accent set includes 87 speakers in 23.3 hours; Southern 
accent set includes 47 speakers in 10.2 hours; Hispanic accent set 
includes l7 speakers in 3.2 hours. The accents in this data set are 
manually labeled by human. Test set 2 with obvious Southern 
accent is used for accent modeling experiments, which were 
composed of 12 labeled southern accent speakers in 9.4 hours. The 
adaptation data of each speaker was 4 minutes long, recorded by 
the speaker in the enrollment stage reading the prompts. 

3. SVM BASED ACCENT DETECTION METHOD 

Support vector machines trained on Gaussian “supervectors” have 
been successfully used for the speaker verification and dialect 
recognition tasks [14, 16]. A GMM supervector (GSV) is 
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constructed by stacking the weighted means of the mixture model. 
GSV-based approaches map each speech utterance to a high-
dimensional vector space. Support Vector Machines (SVMs) are 
generally used for classification of test vectors within this space. In 
this work, we apply the GSV with SVM approach to the basic 
accent detection problem. 
 
3.1. Feature Extraction 
Automatic time-aligned context-independent (CI) phone 
segmentation is generated by an English speech recognition system, 
where the acoustic model consists of 5k tied-states and 200k 
Gaussian components, trained on 2000 hours of data. The extracted 
features were 24-dimension vectors computed via an LDA+STC 
projection from 48-dimsion MFCC features (the static cepstra plus 
the 1st, 2nd and 3rd order derivatives). SAT training was first 
performed on the features, where the speaker-specific transforms 
were estimated via Constrained MLLR (CMLLR), and then 
feature-space and model-space MPE training was performed based 
on the SAT model. The language model used in the experiments 
was a general purpose trigram model. 
 
3.2. GMM Supervector Extraction 
The GMM supervector can be considered as a mapping between an 
utterance and a high-dimensional vector. This concept fits well 
with the idea of a SVM sequence kernel. The GMM-universal 
background model (UBM) is a single GMM model that represents 
the distribution of speaker independent features. This is done in 
order to deal with the variability that characterizes accent 
recognition. The GMM supervector extraction process is as 
follows: 
a) Build a GMM-UBM for each phone type: After removing the 

non-speech phone, our phone inventory includes 50 CI phones; 
The GMM-UBM for each phone consists of 16 Gaussian 
components with diagonal covariance matrices, which is 
trained using the frames aligned to the same phone type from 
all training utterances.  

b) Adapt the GMM-UBM and extract GMM Supervectors at the 
phone level: 

1. Take 2-minute speech utterances chunks labeled with 
accent labels (such as “native” or “southern”);  

2. MAP Adapt the means of the corresponding phone GMM-
UBM on each chunk; 

3. The adapted phone GMM forms a super-vector for each 
chunk by stacking all the weighted Gaussian means in one 
super-vector. Such a supervector summarizes the acoustic-
phonetic characteristics of each phone in one vector.  

4. Treat these super-vectors as SVM training features.  
The resultant projection vectors naturally reflect the relationship of 
voice similarities among all specific accent utterances chunks, and 
hence are robust against interference from non-speaker factors. 
 
3.3. Phone-type-based SVM Method 
Support vector machines (SVMs) have been proved to be an 
effective method for pattern recognition. SVMs perform a 
nonlinear mapping from an input space to an SVM feature space. 
Linear classification techniques are then applied in this potentially 
high-dimensional space. The main design component in an SVM is 
the kernel, which is an inner product in the SVM feature space. 
Since inner products induce distance metrics and vice versa, the 
basic goal in SVM kernel design is to find an appropriate metric in 

the SVM feature space relevant to the classification problem. The 
linear SVM kernel proposed by [14] in equation (1) based on the 
upper bound of Kullback-Leibler (KL) divergence is used here to 
train the target accent detection models implemented with the 
LIBSVM tool [17].  

b
T
aUbUa WWSSK =),(                                       (1) 

Where Φ∈Φ∈ == φφφφ }{,}{ ,, gSfS UbUa are the adapted phone-

GMM sets of utterance chucks aU and bU , Φ   is phone inventory. 
,, , φφ μω and ,

φΣ are the weight, mean and diagonal covariance 

matrix of the adapted phone-GMMs for phone typeφ , respectively. 
while φφ μω , and φΣ are the weight, mean and diagonal covariance 
matrix of corresponding phone GMM-UBM, respectively. Then 
each utterance chuck UxS can be represented as a single 
supervector xW , which is formed by stacking the mean vectors of 

adapted phone-GMM (after scaling by 2/1−∑φφω and subtracting 

the corresponding φμ ) in some fixed order. The supervector 
representation can be viewed as the phonetic finger-print of the 
speaker with accent. 

For binary classifier, such as native vs. southern, the native 
supervector set is used to provide the positive examples, whereas 
the non-native set is used as background or negative samples. 
During test, the supervectors of the testing speech utterances 
chunks are used by the binary classifier to generate a classification 
score. On the other hand, LIBSVM implements the “one-against-
one” approach for multi-class classification. If k is the number of 
classes, then k(k-1)/2 classifiers are constructed and each one is 
trained from two classes.  Voting strategy is used in classification 
stage: the class voted by maximum number of multiple binary 
classifiers will be the classification decision. LIBSVM also 
provides classification probability estimates, which is important to 
the following semi-supervised accent modeling work. Another 
important function in LIBSVM is cross-validation, which is used 
in the accent model initialization in our proposed method. In k-fold 
cross-validation, we first divide the training set into k subsets of 
equal size. Sequentially one subset is tested using the classifier 
trained on the remaining k-1 subsets. 

4. SEMI-SUPERVISED ACCENT DETECTION 

4.1. Accent Characteristics and Variation 
An accent is a certain form of a language spoken by a subgroup of 
speakers of that language which is defined by phonological 
features. It is intuitive that different accents have large difference 
in pronunciation. It is also possible that the spatial and intensity 
information in feature space and distribution pattern has large 
difference within and across different accents. In this section, we 
investigate how to develop a reliable cost measurement of inter-
accent and intra-accent similarity based on neighbor function (NF) 
criterion. 
 
4.2. Neighbor Function Criterion 
The NF is a measurement of neighboring relationship [18, 19, 20]. 
It takes into consideration of both spatial and intensity information 
and their distribution pattern, which is effective to data structure 
with different forms. 
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4.2.1 Neighbor Relationship 
The neighbor relationship between a couple of points ),( ji pp in 

points set }{ nppp L,, 21=Φ  can be described as follows: ip  is 

jp ’s sth neighbor, and on the other hand jp is ip ’s tth neighbor, 

that means there are 1−s neighbors of jp  are closer than ip , 

and 1−t neighbors of ip  are closer than jp  , normally st ≠ . In 

this paper, a cost of the couple ),( ji pp  is defined as: 

jitsaij ≠−+= ,2 . 
 
4.2.2 Neighbor Function 
In points set Φ , if points ip and jp are conjoint, the neighbor 

function ijc  of ),( ji pp  is defined as ijij ac = , it is nonnegative 

because 0≥ija ; if points ip and jp are not conjoint, the neighbor 

function 0=ijc . Here, neighbor function also can be called as 
conjoint cost.  

⎩
⎨
⎧

=
otherelse

ppifa
c jiij

ij 0
)~(

                       (2)  

where )~( ji pp  denotes that ip and jp  are conjoint. As shown in 

Fig.1, class 1ω (solid circles) are dense, class 2ω (hollow circles) 
are sparse. 2ω∈ip  is more reasonable than 1ω∈ip  by human’s 
intuition, but ip ’s nearest neighbor is kp  and 1ω∈kp . So ip  
would be classified in 1ω  if judged by Euclidean distance. But if 
judged by neighbor function, kp  is ip ’s closest neighbor, s=1; 

ip  is kp ’s sixth neighbor, t=6. The neighbor function of ),( ki pp  
is 5261 =−+=ikc , similarly, the neighbor function of ),( ji pp  

is 1212 =−+=ijc , ijc  is smaller than ikc , so 2ω∈ip . 

 
Fig. 1 Illustration of neighbor function: although ip ’s nearest 
neighbor is 1wpk ∈ , 2ω∈ip  according to neighbor function 
 
4.2.3 Cost function 
When we have defined the cost of conjoint samples, we can 
compute the cost of intra-class and inter-class. We can define the 
cost of intra-class as equation (3). 

∑∑
= =

=
N

i

N

j
ijIA cL

1 1

                                          (3) 

Where N is the number of samples. 
Define ijγ as the minimal neighbor function value between 

class iω and class jω , i.e. calculate all the neighbor function 

values of sample pairs between class iω and class jω , and ijγ is the 
minimal of the values. Obviously, the minimal neighbor function 
value between class iω and other 1−c classes can be defined as 
following: 

ij
ijj

i γγ
θ ≠∈

=
,

min , },,2,1{ cL=θ                          (4) 

Let k be the class with minimal neighbor function value 
between iω and other 1−c classes. maxiα  represents the maximal 
conjoint cost within the class iω and maxkα represent the maximal 
conjoint cost within the class kω . Then we can define the inter-
class cost of iω in follows: 
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Then the total inter-class cost of all classes is defined by  

∑
=

=
c

i
iIRL

1

β                                               (6) 

From the above equation, we can see that if the minimal neighbor 
function value between iω and kω is smaller than the maximal 
conjoint cost within them, iβ is positive. From the discriminative 
perspective, we need maximize iγ  and minimize maxiα , maxkα  to 
make all the inter-class cost negative. 

Taking both inter-class cost and intra-class cost into account, 
we define the cost function criterion as  

IRIANN LLJ +=                                          (7) 
 
4.2.4 Accent Class Purity Measurement based on Cost Function 
As large difference in feature space and distribution pattern within 
and across different accents, cost function is very fitful to measure 
the accent class purity in the iterative semi-supervised accent 
detection and classification process. We should minimize the cost 
function step by step, which can be treated as automatic stop 
criterion in the iterative process. 

4.3. Semi-supervised Accent Detection 
As mentioned in section 3, we extracted adapted GMM for each 
utterance chunk, which is treated as a sample point here. To 
compute the cost function, we firstly generate the neighbor 
function matrix of training data as follows: 
a) Compute distance matrix Δ ;  each element : ),( jiij yyΔ=Δ  

describe the distance between iy and jy . Kullback-Leibler 
divergence is employed as the distance measurement in the 
vector space of two sample points. 

b) According to Δ , compute the neighbor matrix M , each 
element ijM is neighbor relationship value of sample jy  to 

iy .Generally M is non-negative matrix. 
c) Generate neighbor function matrix L , where each element 

2ω

ip

jp

kp

5=ikF  

1=ijF  

 

1ω
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is 2−+= jiijij MML . If points ip and jp are conjoint, ijL is 
their neighbor function value. We can set the diagonal value 

NLii 2= or larger value, where Ni ,,2,1 L= . 
On the other hand, we need train seed models based on selected 
data using 5-fold cross validation SVM accent detection system. 
We first divide the each accent training set into 5 subsets of equal 
size. Sequentially one subset is tested using the classifier trained 
on the remaining 4 subsets. We only use the “correct” detection 
data to train the initial seed accent model, where the “correct” 
means the selected data have the same accent label between 
detection output and field label (user’s self claim). We select the 
accent data at the sample level but not the speaker level to 
guarantee representative samples from different speakers can be 
used in the model training. 

The semi-supervised accent detection method is formally 
implemented by the following iterative procedure: 
1) Accent detection and labeling of every accent training data by 

comparing the probability output with threshold based on the 
current accent detection model, where probability threshold 
will be increased by step 5% from 50% at each following 
iterative step. 

2) Only select the data in training set with the same label between 
detection output and field label. 

3) Compute the cost function value on accent class of selected 
data as equation (7), which will be normalized by total selected 
sample number. 

4) Continue next step until the process can not decrease the cost 
function value. 

5) Update the accent detection models based on selected data. 
The above process can support binary and multi-class accent 
classifier task. 

5. EXPERIMENTAL RESULTS 

5.1. 3-class Accent Detection Task 
In this experiment, we concentrate on 3-class accent detection task: 
Southern/Native/Hispanic. To avoid biasing to specific accent, the 
training set here includes the entire native accent training data in 
52.4 hours, Southern accent data with same amount data from 308 
speakers and Hispanic accent data with same amount data from 
341 speakers selected randomly Firstly, we use two traditional 
methods to train the accent classification models directly on the 
above accent training sets. 1) accent classification use the 
likelihood scores based on the accent AMs adapted from the native 
AM.  2) phone type based SVM method. The testing is on Test set 
1, where the speaker’s accent classification result is decided by the 
voting of their samples’ accent label output. 

Table 1. Accent detection performance comparison of two systems 

 From Table 1, we can see the accent detectors easily bias to native 
label, mainly because many speakers in Southern/Hispanic data set 
actually are native ones, even they think themselves are with some 
accent. Table 2 shows the classification accuracy results using 
Native/Southern/Hispanic 3-class classifier based on our semi-
supervised accent data selection and modeling process. We can see 
our semi-supervised method can achieve good and unbiased accent 
detection results. 

Table 2. Performance using semi-supervised accent detection 

 Classification Accuracy
Test set 1 (Southern/Native/Hispanic) 95.3%/87.3%/85.7%

Test set 2 100.0% 

 5.2. Acoustic Models Adaptation with Detected Accent Data 
The experiments are based on an English speech recognition 
system as mentioned in section 3.1. In this section, we will focus 
on southern accent data to perform accented AMs adaptation 
experiments. Many speakers in Southern accent training data set 
actually are native ones, so we will train the Southern/Native 
binary detector based on semi-supervised process using 
Southern/Native accent training data to further identify pure 
southern accent data from the corresponding accent training set. 
Finally, we select 49% speakers with about 200 hours data from 
southern accent training set, which is used to build southern accent 
specific adapted acoustic models. For comparison, we also build 
new SVM based detectors using Test set 1 (with manually labeled 
accent test data) to identify the southern accent training data. 
Compared with these two detected accent speaker list, there are 
about 93% matched speaker distribution. For the above selected 
accented speakers, we verify the accuracy of accent detection 
results by manually labeling about 100 southern speakers, and we 
found 95% speaker have medium to high southern accents, others 
also have low accents. 

Table 3. Performance on Southern accented AMs 

 Test Set 2
Baseline  
(Native Model)

Accent Model  
(Adaptation set A) 

Accent Model  
(Adaptation set B)

 WER WER (WERR) WER (WERR) 
ne 11.78% 11.02% (6.46%) 10.69% (9.27%)
4m 10.36% 10.21% (1.45%) 9.88% (4.67%) 

The performance comparison results using Southern accented 
AMs are shown in Table 3, where non-enrollment case is 
unsupervised speaker adaptation, referred to as ne here; while in 4-
minute enrollment case, we use the 4 minutes standard enrollment 
data to do feature space and model space speaker adaptation, 
referred to as 4m here. In the accented AMs building, 2 sets of 
adaptation data are employed for comparison: 1) entire southern 
accent training set, refer to as set A here; 2) detected southern 
accent speakers by our semi-supervised method mentioned above, 
refer to set B here. We can see from the results, above relatively 
9% gain with MAP based accented AMs adaptation and half of the 
gain survived after 4 minutes enrollment data speaker adaptation, 
which also indicates that the accent data is quite different from the 
native data, and accent issue has great impact in practical 
applications. 

6. CONCLUSIONS 

In this paper, we proposed a flexible framework to effectively 
select pure accent data and build the accent detection model from 
the unreliable accent labeling. The performance can be improved 
by the accented AMs based on the selected accent data in ASR 
experiments. For real application, a typical approach to improve 
the performance is to integrate an accent detector followed by a 
corresponding accent-specific recognizer. Our semi-supervised 
accent detection method is a kind of active learning algorithm, 
which is valuable in the area where large amount of unlabeled data 
is available.  

Classification Accuracy Native Southern Hispanic
SVM based method 79.1% 60.4% 62.5% 

AM Likelihood score 96.6% 21.6% 29.4% 
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