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ABSTRACT

This paper investigates employment of Subspace Gaussian

Mixture Models (SGMMs) for acoustic model adaptation to-

wards different accents for English speech recognition. The

SGMMs comprise globally-shared and state-specific param-

eters which can efficiently be employed for various kinds of

acoustic parameter tying. Research results indicate that well-

defined sharing of acoustic model parameters in SGMMs can

significantly outperform adapted systems based on conven-

tional HMM/GMMs. Furthermore, SGMMs rapidly achieve

target acoustic models with small amounts of data. Exper-

iments performed with US and UK English versions of the

Wall Street Journal (WSJ) corpora indicate that SGMMs lead

to approximately 20% and 8% relative improvements with

respect to speaker-independent and speaker-adapted acous-

tic models respectively over conventional HMM/GMMs.

Finally, we demonstrate that SGMMs adapted only with

1.5 hours can reach performance of HMM/GMMs trained

with 18 hours.

Index Terms— Automatic speech recognition, Acoustic

model adaptation, Accented speech, Under-resourced data

1. INTRODUCTION

A major problem in acoustic modeling of dialectical or ac-

cented speech is the sparse availability of speech resources.

Even in the case of well-resourced languages, acoustic and

language model adaptations towards different accents or di-

alects from a source language (out-of-domain data) require a

minimum amount of adaptation (in-domain) data to achieve

reasonable performance in the adapted system. Naturally,

availability of adaptation data is even more problematic for

less viable languages, dialects or infrequent accented speech.

Therefore, conventional approaches for developing ASR sys-

tems on accented speech are directed by the amount of adap-

tation data and vary from simply building a recognizer purely

using an accented speech to various types of adapting recog-

nizers initially trained on a source language.
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In this paper, Subspace Gaussian Mixture Models (SG-

MMs) employed for acoustic model adaptation towards ac-

cented speech are investigated. SGMMs have previously been

shown to be beneficial in speaker adaptation, where they can

be directly compared with conventional HMM/GMMs [1, 2].

SGMMs were also investigated for both multi-lingual and

cross-lingual speech recognition tasks, where the globally-

shared parameters were estimated by tying across the multiple

languages [3]. The work in this paper has commonality with

the prior work in that the out-of-domain data is considered as

a remedy for training data sparseness.

In the multilingual ASR task, use of conventional

HMM/GMMs is rather complex, rendering comparison of

techniques similarly difficult. Accent adaptation represents

a task lying conceptually between speaker adaptation and

multilingual ASR. Acoustically, it represents a different sur-

face realization of essentially the same phonemic sequence.

It is a difficult adaptation task but, crucially, does not in-

volve difficulties with different phone sets, lexicons and lan-

guage models. The use of a homogeneous phone set in

turn allows direct comparison with conventional adaptation

techniques such as Bayesian-based (MAP) or linear trans-

formation techniques used on HMM/GMMs. In addition,

more complex acoustic model training procedures (e.g., ef-

ficient speaker adaptive training) can also be exploited on

top of adapted HMM/GMMs and thus directly compared

to the novel SGMM acoustic modeling approach. Ulti-

mately, we also investigate the performance dependency of

HMM/GMMs and SGMMs on the amount of adaptation data

and the number of free parameters in both systems.

Experiments were performed using the well-known Wall

Street Journal (WSJ) data (US English) [4] and the accent

mismatch was simulated using UK version WSJCAM [5].

The rationale behind this is that US and UK English are mu-

tually intelligible. Further, the newspaper English of the WSJ

derived databases is rather formal, and representative of the

overlap of the two accents rather than the differences. This

suggests use of the same phonetic lexicon throughout the ex-

periments.

The paper is organized as follows: in Sect. 2, we de-

scribe acoustic model adaptation techniques in conventional
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HMM/GMMs as well as in SGMMs. Sect. 3 presents adapta-

tion experiments with results followed by Sect. 4 which con-

cludes the paper.

2. ACOUSTIC MODEL ADAPTATION

2.1. Background

Much research has been carried out on dialectical and foreign

accented speech recognition during the past few years. In [6],

German-accented English speakers in a conversational meet-

ing task were investigated. Similar experiments were carried

out on Japanese-accented English [7]. Both tasks [6, 7] show

that training on non-native speech data yields the largest gains

in performance on accented speech. The adaptation provided

using Maximum Likelihood Linear Regression (MLLR) [8]

(e.g., applied individually to each test speaker), using MAP

re-estimation [9] (also known as Bayesian adaptation), or by

combining both, revealed them to be effective approaches for

accented speech.

2.2. SGMM adaptation

The Subspace Gaussian Mixture Model (SGMM) [1] is a

way of compactly representing a large collection of mixture-

of-Gaussian models. Unlike conventional HMM/GMMs in

which state model parameters are directly estimated from the

data, SGMM model parameters are derived from a set of state-

specific parameters, and from a set of globally-shared param-

eters which can capture phonetic and speaker variation [1]. In

the case of a conventional Gaussian Mixture Model (GMM),

the likelihood is given as

p(x | j) =

Mj∑

i=1

wjiN (x;µji,Σji), (1)

where j is the state and the parameters of the model are wji,

µji and Σji. The SGMM in the basic case is given as

p(x | j) =
I∑

i=1

wjiN (x;µji,Σi) (2)

µji = Mivj (3)

wji =
expwT

i vj∑I

l=1 expw
T
l vj

, (4)

where vj are state-specific vectors (with dimension similar to

that of the speech features), and wi, Mi, and Σi are globally-

shared parameters. I is the number of Gaussians in the shared

GMM structure. In fact, we employ a Universal Background

Model (UBM), which is a mixture of full-covariance Gaus-

sians of size I that is used to initialize the system and to prune

the Gaussian indices during training and decoding. The ba-

sic concept of SGMMs can be extended towards large-scale

acoustic models by adding sub-states (i.e., each state j is as-

signed with sub-states - each with its own mixture weight and

sub-state specific parameters) and speaker-dependent mean

offsets via speaker vector parameters v(s) and “speaker pro-

jections” Ni [2].

Usually in a multilingual SGMM framework, the

globally-shared model parameters wi, Mi, and Σi embody

most of free parameters in the system and are initially trained

using out-of-domain data (i.e., data from well-resourced cor-

pora) in a Maximum-Likelihood (ML) fashion. Then, the

state-specific parameters vj are ML re-trained using in-

domain (adaptation) data [1]. If the amount of training data

is not sufficient to allow the global parameters to be trained

using ML, it has been shown that MAP adaptation of the

phonetic subspace parameters with a matrix variate Gaus-

sian prior distribution can be employed in a multilingual sce-

nario [10]. Since a homogeneous phone set is used in our

adaptation scenario, the globally-shared SGMM parameters

initially estimated using out-of-domain data can be directly

re-estimated using in-domain data in a ML fashion.

In this paper, we aim to evaluate SGMMs in AM adap-

tation task towards accented speech. Since conventional

HMM/GMMs can fully adopt Bayesian and transform-based

adaptation techniques in this task, a good baseline system can

be built capitalizing on combining these and other state-of-

the-art algorithms (e.g., MAP, fMLLR, SAT).

3. ADAPTATION EXPERIMENTS

Based on the above discussion, we hypothesize that SGMMs

are capable of outperforming an HMM/GMM baseline sys-

tem for diverse training and adaptation conditions.

All the experiments were done with the open-source Kaldi

speech recognition toolkit [11]. As noted before, the unique

phone set and lexicon is used throughout all the experiments.

3.1. Core Corpus

The Wall Street Journal (WSJ) database consists of clean,

read speech recorded with high quality microphones. In our

experiments, recordings made with the Sennheiser (close talk-

ing) microphones were used. WSJ was used as out-of-domain

data only for training of the acoustic models. In particular,

SI-84 (WSJ0) training data (about 15 hours of speech with 84

training speakers) was used, which allowed fast turnaround of

our experiments.

3.2. Dialect corpus

The UK English equivalent WSJCAM0 recorded at Univer-

sity of Cambridge was used as in-domain (i.e., adaptation and

evaluation) data. WSJCAM0 was derived from the WSJ0

text corpus and primarily designed for the construction and
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(a) (b) (c) (d) (e)

System WSJ0 WSJCAM0 WSJCAM0 Adapted: #1 Adapted: #2

Amount of adaptation data - 1 hour 18 hours 1 hour 1 hour

HMM/GMMs 37.0 (+59) 23.2 (baseline) 14.6 20.6 19.4 (-16)

+fmllr 32.9 (+60) 20.6 (baseline) 13.0 17.7 17.0 (-17)

+SAT(fmllr) + MLLT 32.3 (+70) 18.9 (baseline) 11.2 16.8 15.5 (-18)

#STATES/#GAUSSIANS 2K/10K 1K/2.5K 2K/10K 2K/10K 2.5K/10K

SGMMs 33.4 (+50) 22.3 (baseline) 11.3 17.4 15.9 (-29)

+spkvcs 32.7 (+55) 21.1 (baseline) 10.7 16.6 14.8 (-30)

+spkvcs+fmllr 32.1 (+60) 20.1 (baseline) 10.4 15.9 14.4 (-28)

#STATES/#SUB-STATES 2K/8K 1K/3K 2K/8K 2K/8K 2.5K/8K

Table 1. WERs [%]: Experimental results on the WSJCAM0 evaluation set. WERs given in brackets are relative with respect

to the WSJCAM0 baseline trained on 1 hour. Table also shows number of parameters used for building the acoustic models.

evaluation of speaker-independent speech recognition sys-

tems [12]. As for WSJ0, we used the high-quality Sennheiser

head-mounted microphone recordings. As the training and

test sentences in WSJCAM0 were taken from WSJ0 corpus

(non-verbalized pronunciation texts) [5], the lexicon provided

with WSJ0 was used during all the experiments.

The full training set contains about 18 hours of speech

with 92 training speakers. In order to simulate lack of adapta-

tion data, most of the experiments employ 1 hour of training

data randomly selected from the WSJCAM0 training corpus

(92 speakers are still kept as for the full training set). In ad-

dition to 1 hour, we also created subsets with 1
2 , 1, 2, 4 and 8

hours of train data to investigate the dependency of the adap-

tation on amount of data. The first evaluation set in WSJ-

CAM0 with 14 speakers with a total of 2.5 hours was used

for testing of our adapted acoustic models.

3.3. Experimental setup

All reported results are based on mean and variance (per-

speaker) normalized 39-dimensional MFCC plus delta plus

acceleration features. The WSJCAM0 test set was de-

coded with the 20 K open vocabulary (with UNK) with non-

verbalized pronunciations, which is included with WSJ0 cor-

pus. As the Language-Model (LM), we used a highly-pruned

version of the trigram LM (∼0.6 M instead of ∼3 M trigrams)

included also with the WSJ0 corpus. The acoustic scale fac-

tor was always tuned for the best Word Error Rates (WERs)

during our experiments.

The conventional context-dependent HMM/GMM tri-

phone system uses standard mixture-of-diagonal-Gaussian

models. Both systems (i.e., HMM/GMMs and SGMMs) use

the same decision-tree clustered tri-phones trained on the re-

spective corpora (i.e., data used for GMM training). In fact,

an extended phone set with position and stress dependent

phones, where decision-trees correspond to “real” phones,

was used.

3.4. Experimental results

As stated before, Bayesian and transform-based adaptation

techniques have shown their effectiveness when applied on

accented speech. According to past experimental results on

dialectical or accented speech adaptation (i.e., [13] or [14]),

MAP usually outperformed MLLR adaptation (applied as a

set of phone-based transforms). Although MLLR offers fast

adaptation rates, our recent multilingual studies indicate that

MLLR was dominant only in cases of very small amounts of

adaptation data (i.e., around 5 minutes) [15]. We therefore

decided to build a baseline HMM/GMM system around MAP

(by exploiting adaptation data for an acoustic model trained

using out-of-domain data). We presume that additional signif-

icant gain will rather be achieved by implementing a speaker-

dependent ASR system which in fact will be provided by

transform-based adaptation.

An overview of WER performance of the complete ASR

system exploiting differently trained or adapted Acoustic

Models (AMs) evaluated on the WSJCAM0 evaluation part is

given in Tab. 1. It also describes AMs in terms of number of

parameters1. For SGMMs, the phonetic subspace dimension

S was 40 and the speaker subspace dimension (if applying

speaker vectors) was 39. The UBM was trained on corre-

sponding data and had 400 Gaussians (100 Gaussians for the

1 hour WSJCAM0 training). More particularly for Tab. 1:

(a) AM trained on WSJ0 data only.

(b) AM trained on 1 hour of WSJCAM0.

(c) AM trained on the full WSJCAM0 training set.

(d) Adapted: #1 - AM initially trained using WSJ0 data

and then adapted on 1 hour of WSJCAM0 (using MAP

(τ = 10) in case of HMM/GMMs and using ML

re-estimating state-specific parameters in case of SG-

MMs).

(e) Adapted: #2 - AM initially trained using WSJ0 together

1Note: although we aim to minimize WER, SGMMs are built to have

approximately the same number of state-specific vectors as the total number

of GMMs in the HMM/GMM system.
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with 1 hour of WSJCAM0 data in ML fashion and then

adapted on 1 hour of WSJCAM0 (using MAP (τ = 10)

in case of HMM/GMMs and using ML re-estimating

state-specific parameters in case of SGMMs). Unlike

(d), here, we perform an experiment where the adap-

tation data is first used in initial ML training together

with out-of-domain data. Then, the same data is used

to adapt previously developed AM.

Further, the adaptation scenario has been extended to-

wards speaker-dependent AMs. In the case of HMM/GMMs,

first, speaker adaptation using feature-space Maximum Like-

lihood Linear Regression (fMLLR), also known as con-

strained MLLR [16], was applied during the decoding.

Then, fMLLR was also used in Speaker Adaptive Train-

ing (SAT) [17], together with Maximum Likelihood Linear

Transform (MLLT) [18] aiming to decorrelate the feature

vectors. In the case of SGMMs, the speaker subspace for

Gaussian means together with speaker vectors (denoted to as

”spkvcs“) was applied as a linear transform towards speaker

adaptation. Similar to the HMM/GMM case, speaker-based

fMLLR was then applied during the decoding.

In addition to Tab. 1, Fig. 1 graphically visualizes recog-

nition results for different amounts of in-domain data used to

adapt HMM/GMMs and SGMMs (i.e., the case #1). More

specifically, we show results for speaker-independent AMs.

Baseline HMM/GMMs and SGMMs were trained only using

a corresponding amount of in-domain data. The number of

parameters in the HMM/GMM as well as the SGMM sys-

tem were adapted accordingly. In the adapted systems, the

models were initially trained using WSJ0 and then adapted

(HMM/GMMs using MAP (τ = 10), state-specific parame-

ters re-trained in SGMMs) using a corresponding amount of

in-domain data. Overall, Fig. 1 shows that adapted SGMMs

outperform HMM/GMMs for all the chosen sizes of adap-

tation data. Interestingly, this is also the case for very small

amounts of data (0.5 hours) where non-adapted SGMMs yield

very poor performance. Further, we also performed an ex-

periment exploiting all in-domain (full corpus) WSJCAM0

training data to adapt AMs initially trained on WSJ0. In this

case, adapted HMM/GMMs (WER about 13.8%) as well as

adapted SGMMs (WER about 10.9%) outperformed the base-

line AMs trained only using the full 18 hours WSJCAM0 cor-

pus (see Tab. 1).

4. CONCLUSIONS

Overall, SGMMs outperformed the HMM/GMM baseline.

For the 1 hour adaptation scenario, relative WER improve-

ments of the adapted SGMMs are about 20% and 8% for

speaker independent and speaker-dependent acoustic models,

respectively, over the adapted HMM/GMMs. When com-

pared to AMs trained uniquely on 1 hour of in-domain data,

SGMMs benefit better from out-of-domain data (29% rela-
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Fig. 1. WERs [%]: Experimental results on the WSJCAM0

evaluation set with respect to amount of in-domain data used

during training or adaptation. Non-adapted AMs were di-

rectly trained using respective amount of in-domain data.

Adapted AMs were first trained using WSJ0 data and then

adapted using respective amount of in-domain data.

tive improvement) than HMM/GMMs (16% relative improve-

ment). Both types of models are able to profit from in-

domain data available during initial ML training. Whilst for

very small amounts of in-domain data non-adapted SGMMs

fail, the adapted SGMM system significantly outperforms the

HMM/GMM baseline. Finally, experimental results indicate

that SGMMs adapted using about 1.5 hours of in-domain data

achieve similar performance as HMM/GMMs trained on the

full 18 hours WSJCAM0 corpus.
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