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ABSTRACT 
 
The performance of automatic speech recognition (ASR) is 
heavily dependent on the acoustic environment in the target 
domain. Large investments have focused on ways to record 
speech data in specific environments. In contrast, recent 
Internet services using hand-held devices such as 
smartphones have created opportunities to acquire huge 
amounts of "live" speech data at low cost. There are 
practical demands to reuse this abundant data in different 
acoustic environments. To transform such source data for a 
target domain, developers can use channel mapping and 
noise addition. However, channel mapping of the data is 
difficult without stereo mapping data or impulse response 
data. We tested GMM-based channel mapping with a vector 
Taylor series (VTS) formulation on a per-utterance basis. 
We found this type of channel mapping effectively 
simulated our target domain data. 

Index Terms— Speech recognition, feature adaptation, 
channel normalization, noise reduction 
 

1. INTRODUCTION 
 
ASR products started with desk-top dictation into a 
telephony system and were later built into embedded 
systems for automobiles. This domain-focused approach has 
led to large investments in acquiring speech data for specific 
domains. The same need for large investments has also 
prevented ASR products from being used for more 
languages around the world. 

Nowadays, smartphones and tablet devices are in 
widespread use and the situation is changing. Messaging 
and search applications using human speech are becoming 
routine. Many of them use an Internet connection to send 
speech data to an ASR server and receive recognized text. 
Such an ASR server could easily and inexpensively collect 
huge amounts of natural and spontaneous speech. Currently, 
this data is only used to retrain the acoustic model of the 
ASR system, but there is enormous potential in 
transforming the data into corpora for other application 
domain. 

The traditional approach to synthesize the data for a 
target domain data is to first convolve the impulse responses 

and then add the environmental noise [1]. This is a 
straightforward approach to compensate for the channel and 
noise characteristics. However, it is not suitable for our 
purposes, because the channel characteristics of the input 
sources are too diverse for any single impulse response, and 
the input data is never completely clean. Stereo mapping 
can reduce these problems. For example, SPLICE [2] 
estimates the cepstrum bias between the source domain and 
the target domain, based on an a priori model trained with 
stereo data, at least in cases where stereo data is available. 

Instead of such data transformations, we can adapt an 
acoustic model for a target domain using a small amount of 
target data. Parallel Model Combination (PMC) [3] and 
Vector Taylor Series (VTS) adaptation [4] can transform 
models for noisy environments. Maximum Likelihood 
Linear Regression (MLLR) [5] adjusts the model 
parameters to maximize the likelihood of the adaptation data. 
Seltzer et al. proposed cascaded MLLR (CMLLR) [6] to 
adapt to the environmental characteristics and speaker 
characteristics independently. It remains a challenging task 
to separate the environmental characteristics and the speaker 
characteristics without identifying the speakers and labeling 
the environments. In the field of speaker verification, 
Feature Mapping [7] and Joint factor analysis [8] tackled 
this challenge.  

Unlike many of the previous projects, we are not 
exploring a rigorous separation of channel characteristics 
and speaker characteristics. We accept a target domain 
GMM as the a priori knowledge of the channel 
characteristics to mix with minimum speaker variations.  
 

2. AUDIO MAPPING PIPELINE 
 
Channel and noise characteristics are the major factors to 
map speech data into a target domain. Fig. 1 shows our 
mapping pipeline to work with the factors. 

It is crucial to compensate the channel data before the 
noise. To illustrate this problem, the same automobile noise 
was added to two different kinds of speech data. Fig. 2 
shows the distributions of the noises after cepstrum mean 
normalization (CMN) for each utterance. Even though the 
same noise was added, the resulting signals are quite 
different due to the run-time channel normalization (such as 
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CMN). This motivated us to tailor the channel 
characteristics first so to have similar signals at the decoder. 
 

3. CHANNEL MAPPING 
 
The basic idea is as follows: the source domain has multiple 
utterances but they are so dissimilar that they cannot be 
modeled with one model. There is a target domain with a 
little data from which one can estimate a GMM. For each 
utterance in the source domain, find channel bias and 
amplitude that can map the utterance to the target domain. 
To do this, use VTS [9][10] to map the target domain 
Gaussians to the source domain. This incorporates bias and 
amplitude as unknown parameters and ML is used to get the 
best estimate of them. Subsequently, the source utterance is 
transformed to the target domain by applying the channel 
bias and amplitude. The transformed source data is then 
used as training data to estimate a full-fledged acoustic 
model for decoding the sentence in the target domain. 
 
3.1. Bias-only formulation 
First we work with the channel bias. For the source domain, 
observation y is described using clean speech x, channel h, 
noise n, and a mismatch function G in the cepstrum domain 
as 

( ),,nhxGxhy +++=  (1) 
( ) ( )( )( )xnCCx,nG −+= −1exp1log . (2) 

The matrix C is a Discrete Cosine Transform (DCT) matrix.  
The target domain clean speech ŷ can be characterized as 

xhy += ˆˆ . (3) 
Using Equations (1) and (3), we have 

( ) ( )nhxGhhyy ,ˆˆ ++−+= ( )ncyGcy ,ˆˆ +++= . (4) 
The channel bias c is now defined as 

hhc ˆ−= . (5) 
We set c so as to minimize the auxiliary functionQ . 
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The expectation is calculated using all of the speech frames 
in each utterance. The posterior probability kρ  is for the k-
th Gaussian, calculated as 

( ) ( ) ( )∑
′

′′′ ΣΝ⋅ΣΝ⋅=
k

kykykkykykk yyy ,,,, ,;,; μγμγρ , (7) 

where kγ is the priori probability, 
dky ,,μ is a mean statistic for 

the d-th component of the k-th Gaussian in the source 
domain, and 

dky ,,Σ is the variance. We used the diagonal co-

variance approximation. Because the GMM is for the target 
domain, the source domain statistics need to be derived 
from the target domain statistics

dky ,,ˆμ and
dky ,,ˆΣ using Eqn (4). 
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The noise statistics nμ and
dn,Σ are calculated for the non-

speech segments. We used power-based segmentation here. 
We iteratively estimated the channel bias c for the d-th 
component by differentiating Eqn (6) w.r.t. cd and setting it 
to zero. The indirect derivatives of F were ignored, so the 
second term in Eqn (6) can also be ignored, because 

ky,Σ  is 

treated as a constant. The mapped output y~  is given by 
cyy −=~ . (11) 

 
3.2. Bias and amplitude formulation 
We can now introduce the amplitude into the channel 
mapping formulation. This is an analogy of some adaptation 
techniques such as Mean and Variance Normalization 
(MVN) [11] or a diagonal MLLR [12]. Thus, Eqn. (4) can 
be extended as 

( )ncyaGcyay ,ˆˆ +∗++∗= ,  (12) 
where the ∗  denotes a component-wise product and a is the 
amplitude. The source domain statistics are given by 

( )
dnkyddkyddky caGca μμμμ ,,ˆ,,ˆ,, +∗++⋅≅ , (13) 
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Similar to the bias-only case, we take the derivatives of Eqn 
(6) with a and c set to zero. Starting with the initial values 
of c=0 and a=1, the mapping parameters c and a are  

Channel 
mapping

GMM

Noise
addition

Noise

Source 
domain data

Simulated target 
domain data

 
Fig. 1. Audio mapping pipeline. 

 

 
(a) Automobile noise 

normalized by parked-car 
speech mean. 

 
(b) Automobile noise 

normalized by handheld 
speech mean. 

Fig. 2. Distributions of the noise after CMN, plotted only 
for the lower cepstrum c1 and c2. 
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updated iteratively. In our experiment, we updated c first, 
then we updated a. For c, all 13 of the components were 
updated. For a, only the 0th to 2nd components were updated, 
because the lower cepstra are the major and stable 
representations of the channel. In order to work with 
possible problematic utterances, we limited the range of a 
from 0.5 to 2.0. 

The mapped output y~  is given by 
( )cyay −= − *~ 1  (15) 

 
3.3. Gender-dependent formulation 
Similar to the gender-dependent labeling (GDL) [13] for an 
ASR decoder, we can prepare separate GMMs for male and 
female voices. They are combined with the gender 
weights

gλ . 
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The gender weights
gλ are updated based on the posterior 

probabilities of the GMMs during the iterations to determine 
the mapping parameters as 
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We may optionally introduce softmax for faster gender 
determination. 
 

4. NOISE ADDITION 
 
To simulate the noise characteristics, ambient noises need to 
be recorded in situations appropriate for the target domain. 
Preferably, the data should be recorded with the same cars 
and microphones as those used for training the GMM. 
Noises are randomly selected and mixed with the speech 
data after channel-mapping. We did not remove the noise in 
the source data beforehand, because it was sufficiently small. 
The mixing weight is adjusted for each utterance so as to 
conform to the overall target SNR distribution. 
 

5. EXPERIMENTS 
 
We performed two kinds of experiments. Our preliminary 
experiment used the relatively small public database 
CENSREC-3 [14]. Since it is a well conditioned database, 
we could accurately measure the effectiveness of our 
proposed channel-mapping methods. Our more realistic 
experiment used a large amount of LVCSR data. The 
recording environments are quite diverse, including offices, 
home, cars, restaurants, and trains, but there is no location 
information tagged to each utterance. 
 
5.1. Preliminary experiment using CENSREC-3 

We evaluated the channel-mapping part in isolation using 
CENSREC-3, which is a standard evaluation framework for 
isolated Japanese word recognition in automobiles. It has 
both training and testing data for automatic speech 
recognition using multi-style trained acoustic models. 

In this experiment, we studied channel-mapping from 
close-talk data to far-field data. For training, a total of 3,608 
utterances spoken by 293 drivers (202 males and 91females) 
were recorded in parked cars. The utterances recorded with 
the close-talk microphone were transformed by the channel-
mapping methods to simulate far-field data. The GMM for 
the mapping has 256 Gaussians and is trained with 500 
randomly selected utterances from the clean far-field 
microphone data. For testing, a total of 898 utterances 
spoken by 18 speakers (8 males and 10 females) were 
recorded in parked cars with the far-field microphone. This 
does not include noisy cases such as air-conditioner or car-
audio. The recognition grammar is a list of 50 words. 

The front-end was configured with the default settings 
of CENSREC-3. The sampling frequency was 16 kHz and 
we used 39-dimension features (12 mel-cepstrum + log 
power, with Δ and ΔΔ), with and without subtracting the 
cepstrum mean. 

Table 1 shows the experimental results. The R1 is the 
matched case using far-field data for the training. This gives 
us the upper limit for our trials. The R2 is our baseline using 
close-talk data for the training without using channel-
mapping. Due to the channel mismatch, the accuracy was 
severely degraded, even though it was decoding fairly clean 
speech. It should be noted that the simple CMN was still 
insufficient. The R3 to R5 use our proposed channel-
mapping and showed good recovery. For the R3 values, a 
bias-only implementation was used for the mapping. R4 
improved the result with gender-dependent GMMs. This is 
supporting evidence that the GMM in our approach still 
accounts for both the speaker and channel characteristics. 
For the R5, both the bias and amplitude are considered in 
the mapping. This shows the proposed channel-mapping 
method works well in the combination of CMN and reduced 
errors by 58%. 

  
5.2. Testing a larger volume of LVCSR data 
We tested an acoustic model for automobile environments 
built from abundant English LVCSR data using some a 
priori knowledge about the channel and the noise 
characteristics of the target domain, which are specifically 
defined by a GMM and a noise recording. 

We could build an acoustic model from scratch with all 
of the LVCSR data processed by the audio-mapping 
pipeline described in Section 2. However, this naïve 
approach with so much data would take an unacceptably 
long time for the repeated build processes with 
discriminative training. Therefore, in our experiment, we 
built a baseline acoustic model using all of the LVCSR data 
without any mappings and we adapted this baseline model 
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with adaptation data generated from a small part of the 
LVCSR data by using the audio-mapping pipeline. 

The baseline acoustic model was discriminatively 
trained with a large amount of the LVCSR data. This data 
represented several thousands of hours of speech. It 
contains roughly 400k of Gaussians with 20k of quinphone 
context-dependent states. The sampling frequency was 16 
kHz. The front-end acoustic features are 48-dimensional 
MFCC including static and dynamic features.  

For the adaptation data, 70 hours of utterances were 
randomly selected from the high SNR subset of the LVCSR 
data. The selection criteria of the SNR were 25 dB. The 
utterances were processed by channel-mapping and noise-
addition. 

The GMM for the channel-mapping has 256 Gaussians 
and was trained with a randomly selected 500 utterances 
(about 1 hour) from 10 hours of recordings spoken by 28 
speakers (15 males and 13 females) in parked cars. For the 
noise sources, 15 noise files were recorded in two cars in 
different driving conditions. Our results are for an in-house 
test set for an in-car messaging task in English. A total of 
8976 utterances spoken by 44 speakers (22 males and 22 
females) were recorded with a far-field microphone in real 
moving and parked cars for this test.  

The channel characteristics can be observed as a bias 
measured with a reference GMM. Fig. 3 shows the 
distributions of the bias measured by the channel-mapping. 
They are plotted only for c1 and c2, because the low cepstra 
are the essential parts of the channel. Since they were 
measured with the parked-car GMM, the 3(a) plots for the 
parked car are distributed around the original point. In 
contrast, the 3(b) plots for the LVCSR data are widely 
shifted. However in 3(c) they are successfully aligned with 
the original point after the channel-mapping. 

 Table 2 shows the word error rates (WER) when the 
models decode the in-car messaging data. H1 used the 
baseline acoustic model, whose training data includes 
various noisy cases. H2 to H4 used the adapted models. H2 
used noise addition for the clean part of the LVCSR data to 
generate the adaptation data. H3 also used the channel-

mapping of the bias-only implementation from Section 3.1. 
There was a significant improvement from H2 to H3 in 
favor of the channel-mapping. For H4, both bias and 
amplitude are considered for the mapping. For the 
amplitude, the 0th to 2nd components were shared in this case. 
We confirmed the amplitude implementation was better, 
though the improvement was small in this experiment. 
 

6. CONCLUDING REMARKS 
 
Although current ASR decoders are equipped with powerful 
channel compensation, the channel-mapping before noise-
addition is a critical step for “speech corpus recycling” that 
reuses a huge data collection from the Internet for a 
different domain (such as our automotive domain). We 
investigated the advantages of the GMM-based channel-
mapping. The GMM trained with a small amount of the 
target domain data is regarded as likely to include the target 
domain channel characteristic slightly mixed with the 
speaker characteristics. Unlike most of the previous 
research, our approach does not depend on a rigorous 
separation of the channel and speaker characteristics. Our 
experiment tested GMM-based channel-mapping for each 
utterance, and it showed a significant capability to simulate 
the target domain data. The GMM-based channel-mapping 
was further extended for a gender dependent model and to a 
“bias and amplitude” model inspired by MVN and diagonal 
MLLR. 
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Table 1. Results of decoding the clean far-field data in CENSREC-
3 with acoustic models trained with far-field or close-talk data 

Accuracy %  Training 
data 

Channel-mapping 
no CMN CMN

R1 Far-field No 99.7 99.7 
R2 Close-Talk No 92.3 95.2 
R3 Close-Talk Yes, bias only 93.1 96.0 
R4 Close-Talk Yes, bias only. 

Gender Dependent. 
94.5 96.8 

R5 Close-Talk Yes, bias and amplitude. 
Gender dependent. 

96.4 98.0 

 
Table 2. Results of decoding in-car messaging data with the 
baseline acoustic model and the adapted acoustic models 

 Acoustic Model WER % 
H1 Baseline model 17.66 

 Acoustic Model adapted by high SNR part 
of LVCSR data (70 hours) with :  

MLLR MLLR 
+ MAP

H2 noise addition only 17.65 17.98
H3 channel mapping (bias) + noise 16.86 16.72
H4 channel mapping (bias and amp.) + noise  16.99 16.68

 

 
(a) Parked-car 

data. 

 
 (b) Clean 

LVCSR data 
(SNR > 25dB).  

(c) Clean LVCSR 
data with 

channel-mapping.
Fig. 3. Distributions of the channel bias measured with the 
parked-car GMM. Only for c1 and c2 are plotted here. 
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