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ABSTRACT 

 

The aim of this paper is to introduce a novel phase-based feature 
representation for robust speech recognition. This method consists 
of four main parts: autoregressive (AR) model extraction, group 
delay function (GDF) computation, compression, and scale 
information augmentation. Coupling GDF with an AR model 
results in a high-resolution estimate of the power spectrum with 
low frequency leakage. The compression step includes two stages 
similar to MFCC without taking a logarithm of the output energies. 
The fourth part augments the phase-based feature vector with scale 
information which is based on the Hilbert transform relations and 
complements the phase spectrum information. In the presence of 
additive and convolutional noises, the proposed method has led to 
15% and 12% reductions in the averaged error rates, respectively 
(SNR ranging from 0 to 20 dB), compared to the standard MFCCs. 
 

Index Terms— Speech phase spectrum, feature extraction, 
group delay, compression, scale information  
 

1. INTRODUCTION 
 
In the majority of current speech processing systems, information 
is captured from the amplitude spectrum and the use of phase-
related information is generally discarded. Three main reasons may 
explain why phase processing has been avoided. The first issue is 
some historical considerations that biased researchers to some 
extent against the phase spectrum. In 1843, Ohm [1] showed that 
human ear performs a Fourier analysis and only the magnitude 
spectrum is utilized in perception.  This theory (Ohm’s acoustic 
law) was also verified by Helmholtz in 1875 [2] and implies that 
human ear is phase deaf. The second reason is phase wrapping, a 
key problem with the phase spectrum, which results in an 
intractable, noise-like, and chaotic shape lacking any informative 
trend and meaningful extremum points. Dealing with this problem, 
researchers proposed unwrapping methods [3]-[5] and also tried to 
evade it by working with phase-derived representations such as 
group delay function (GDF). The third problem with the speech 
phase spectrum is that it has been shown that it does not contain 
much intelligibility information in short frames (20 to 40 ms) and 
by frame length extension its information content increases [6]-
[14]. However, due to the relative non-stationary nature of speech, 
applying longer frame sizes does not make sense. Incidentally, the 
reason behind this trend was not discussed and it remained 
unjustified since 1979 [6].      

 Despite these drawbacks, three GDF-based features were 
recently proposed for Automatic Speech Recognition (ASR): the 
modified group delay function (MODGDF) [15], product spectrum 
(PS) [16], and chirp group delay function (CGDF) [17]. 
Recognition rates of these methods in the presence of additive 
noise are comparable to MFCC, although slightly worse in most 
cases. In the presence of a convolutional noise, their performance 
has been reported to be notably lower than that of MFCC [18]. 
 Notwithstanding these advances, two fundamental questions 
about the speech phase spectrum remain open. First, why does the 
quality of phase-only reconstructed speech improve by frame 
length extension? Secondly, if it is really the fact that the phase 
spectrum of short frames (20 to 40 ms) is not informative, why are 
recognition rates of phase-based features comparable to those of 
magnitude-based features? In [19], we have shown that the reason 
behind both of these two basic issues is the Scale Incompatibility 
Error (SIE). Besides, we have demonstrated that in contrary to the 
prevalent belief, speech phase spectrum could be more informative 
than its magnitude counterpart, even in short frame lengths.  
 Relying on this idea, we first proposed a feature extraction 
method called ARGDD which is based on AR modeling and GD 
processing [18]. Its performance was quite satisfactory in the 
presence of both additive and convolutional noises. However, it did 
not benefit from any specific psychoacoustic finding. In addition, it 
did not deploy the SIE, despite its great importance. In this paper 
we further develop the ARGDD method notably by incorporating 
these steps. The performance of the resulting method over both 
additive and convolutional noises is strikingly higher than standard 
MFCC and other phase-based features. 
 The organization of this paper is as follows. In Section 2 we 
review the SIE and give an answer to the two aforementioned 
fundamental questions. Section 3 introduces the new method and 
examines its main properties. In Section 4 the recognition results 
on the Aurora 2 database are presented and thoroughly analyzed. 
Finally Section 5 concludes the paper.  
 
    2. SCALE INCOMPATIBILITY ERROR (SIE) 
 
In this section we will deal with the two aforementioned 
fundamental questions and will show that their answer lies in 
Hilbert transform relations. As well, the high potential of the phase 
spectrum, particularly in short frame lengths, will be proved.  
 Hilbert transform relations determine the link between the 
phase and magnitude spectra of a minimum or maximum phase 
signal. For a speech signal x(n) whose Fourier Transform is 
denoted by  ( ), they are defined as follows [20]: 
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  | ( )| =   ̂(0) +      ∫    [ ( )]cot (    )                     (1) 
  ̂(0) =    ∫   | ( )|     ,                                                                 (2) 

 
where Ln,  ̂(0), ρ, and arg indicate the natural logarithm, complex 
cepstrum in zero, Cauchy principal value of the integral, and 
unwrapped (continuous) phase spectrum, respectively. Although 
Eq. 1 does not work for a mixed-phase signal like speech, which 
contains both causal and anti-causal components in its complex 
cepstrum [20], it may be interestingly inspiring.  
 It is evident that multiplying a speech signal by a constant 
number has no psychoacoustic effect and just changes the 
intensity. Equation (1) shows that through phase spectrum one may 
reconstruct the signal up to a scale error. It implies that in phase-
only signal reconstruction, the scale error that is introduced after 
reconstructing each frame is equal to exp( ̂(0)). Looking at this 
issue on an intra-frame basis, there is no serious problem since we 
will obtain each frame with a sole scale error, which does not 
affect the intelligibility information content of the frame.  
 On the other hand, it is obvious that the value of the complex 
cepstrum in zero for different frames is not identical. 
Consequently, each phase-only reconstructed frame will have a 
particular scale error. When they are brought together for 
synthesizing the main signal, the scale incompatibility problem 
imposes its adverse effect. The frames which should be overlapped 
and added together have no scale compatibility because each one 
suffers from a different scale error. This will negatively affect the 
quality and/or intelligibility of the synthesized signal. We call this 
error the scale incompatibility error (SIE) [19]. 
 In [19] we removed the scale incompatibility by multiplying 
each phase-only reconstructed frame by exp( ̂( , 0)) (where m 
denotes frame index) and observed that the phase-only 
reconstructed signal in this situation has an interesting high quality. 
It should be emphasized that  ̂( , 0) in each frame is just a 
constant number, which is used solely for properly joining the 
overlapping frames that are added to each other. In other words, it 
has only an inter-frame role and has no intra-frame importance. 
Therefore, the remarkable quality of the phase-only reconstructed 
speech is only rooted in the high information content of the phase 
spectrum.  
 Besides, we quantitatively showed that by extending the frame 
length this error decreases and after removing it, phase-only 
reconstructed speech will have a higher quality and intelligibility 
compared to its magnitude-only counterpart [19]. This is true for 
all frame lengths, including the shorter ones. Taking into account 
these points, answers may have been found for the two 
aforementioned questions. In conclusion, SIE might be an 
argument to contradict the prevailing belief by emphasizing the 
huge potential in using the phase spectrum.  
 

3. THE PROPOSED METHOD 
 
In this section we introduce the proposed method and discuss its 
main properties. Its workflow is displayed in Fig. 1. As seen, it 
consists of four main parts: autoregressive model (AR) extraction, 
group delay (GD) computation, compression, and scale 
information augmentation. The role of each step is discussed 
further ahead. The feature warping which is applied here is based 
on [21] and was originally proposed for speaker verification. Its 
influence on the recognition rates will be discussed in Subsection 
4.3. 

3.1. Coupling the Group Delay with the AR Model 
 
 Coupling the AR model with the group delay function has a 
number of advantages. Before describing them, it is necessary to 
briefly review the main properties of the GDF. It has two important 
properties which are additivity and high resolution. The former 
refers to the point that if two signals are convolved in time domain 
their GDFs will be added to each other, and the latter indicates the 
potential of this function in providing a high-resolution estimate of 
the power spectrum. The main problem with GDF is that when the 
zeros and/or poles of a signal get close to the unit circle, this 
function becomes overwhelmingly spiky and chaotic and 
consequently useless.  
 In the case of a speech signal, the excitation or source 
component introduces some zeros in the vicinity of the unit circle. 
So, the applicability of GDF will be vastly decreased and the 
aforementioned properties become unusable. MODGDF, PS, and 
CGDF were basically proposed for alleviating this problem. 
Another possible approach to overcome this issue is to only keep 
the vocal tract (filter) component of the speech signal and discard 
the excitation (source) contribution. Here, this is approximated by 
extracting the spectral envelope of the signal via AR modeling. It 
not only removes the adverse effect of the zeros but also paves the 
way for deploying the two properties of the GDF in a more 
efficient way.       
 Another benefit of this coupling is compression (dynamic 
range reduction) and adjusting the bandwidth of the formants. In 
MODGDF [15], the authors introduced two extra parameters in 
this regard. Finding the appropriate values for these parameters is 
not straightforward due to the lack of theoretical insight into their 
role. So, the optimum values may be found through a line search. 
Due to the relatively broad span of search and the high 
computational load of each speech recognition test, searching for 
optimum values, which lead to maximal recognition rates is very 
laborious. Furthermore, there is no guarantee that these values 
remain optimum choices under different databases, SNRs, and 
noise types. However, in the proposed method we just need to find 
the AR model order, which depends on the sampling rate, and its 
possible options are very limited. 
 Figure 2 depicts the behavior of different group delay-based 
representations for vowel /ee/ in both clean and noisy conditions. It 
is seen that MODGDF, PS, and CGDF are noticeably sensitive to 
additive noise. On the other hand, the power spectrum of the AR 
model (extracted via the LPC method) and consequently its GDF 
are more robust. However, the GDF of the AR model (AR+GDF) 
results in an estimate of the power spectrum with a higher 
resolution and less frequency leakage, which is very noteworthy. 
This could be exploited in a feature extraction method with high 
robustness and discriminability abilities. 
 

 
 

Fig. 1. Workflow of the proposed method. 
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3.2. Compression 
   

 The next important step is compression. In this stage, the 
power spectrum should be compressed in a rather low number of 
coefficients with minimum loss of vocal tract information. To do 
so, we have employed the Mel filterbank as well as DCT similar to 
what is done for MFCC. However, the logarithm applied to the 
output energies is not considered here. The reason is that the 
logarithm is used for converting the multiplication of the 
magnitude spectra of the source and filter into addition. This will 
smooth the way for separating these two components and preserve 
the filter component for performing speech recognition. However, 
multiplication of the Fourier transforms of two signals corresponds 
to the addition of their phase spectra and group delays (additive 
property). Therefore, the logarithm is not required. The same is 
true for CGDF and MODGDF-CC [22].  
 
3.3. Scale Information Augmentation 
 
 In Section 2, we discussed the scale incompatibility error 
(SIE). Due to its importance, it should be taken into account in any 
phase-based speech processing task. It was shown that speech 
phase spectrum can provide a good estimate of each frame 
waveform, but scale information is missing [19]. It is reasonable to 
augment the phase-based features with such complementary 
information. Based on Hilbert transform relations we investigate 
augmenting the feature vector of each frame with the exp( ̂(0)) of 
that frame. Since the target is not synthesizing the signal, we are 
not obligated to necessarily apply the exp( ̂(0)). The possibility of 
using  ̂ (0) instead of its exponential form will be also addressed in 
Subsection 4.3. 
 It is worth highlighting two points at this stage. First,  ̂(0) 
must not be confused with the c0 coefficient, which is found after 
taking DCT from the output energies of Mel filterbank. Secondly, 
exp( ̂(0)) does not change the GDF shape of the AR model and 
should therefore convey complementary information. Hereafter, 
we will call our proposed method ARGDMF. 

 4. EXPRIMENTAL EVALUATION 
 
4.1. Database  
 
 The performance of ARGDMF was assessed on the Aurora 2 
database [23]. The source speech for this corpus is TIDigits, 
consisting of connected digits, spoken by American English 
speakers, which is later downsampled to 8 kHz. It includes three 
test sets (A, B, and C) with SNRs varying from -5 dB to 20 dB by 
steps of 5 dB. Test sets A and B include additive noises while 
speech signals in test set C are contaminated with both additive and 
convolutional (MIRS [23]) distortions. We have used the clean-
data training in all our experiments and HMMs were standardly 
trained with HTK [24]. 
 
4.2. Feature Extraction Settings 
  
 For all feature extraction techniques, we have used the default 
parameters reported in their respective publications. The frame 
width, frame shift, and number of filters of Mel filterbank are set to 
32 ms, 12 ms, and 23, respectively. For the pre-emphasis 
coefficient, two options are investigated: a fixed value of 0.97, and 
an adaptive approach using r(1)/r(0) as suggested in [25], where 
r(n) is the autocorrelation sequence of the signal. For all techniques 
except for ARGDD and ARGDMF, a Hamming window has been 
used. For these two latter methods we used a Chebyshev window 
with dynamic range of 30 dB based on [19] and the AR model was 
extracted via the LPC method with an order of 12, considering the 
sampling rate of Aurora 2 (8 kHz). For all methods, 12 coefficients 
were used and cepstral mean normalization (CMN) was applied. In 
the following, we investigate in a step-by-step manner the 
influence of various blocks of the algorithm: pre-emphasis, 
window shape, compression method, and scale information. Table 
1 summarizes different variants of ARGDMF. 
 
4.3. Results and Discussion 
  
 The performance of the compared techniques, averaged for 
SNRs varying from 0 to 20 dB, are presented in Tables 2 and 3. In 
the latter, the first and second derivatives are added, leading to a 
vector with 36 features. In general, the ARGDMF-based 
techniques are observed to clearly outperform the state-of-the-art. 
 First, the effect of an adaptive pre-emphasis is analyzed 
(results outside parentheses in Table 2 and 3). On test sets A and B, 
no notable differences are observed due to adaptive pre-emphasis. 
On the contrary, a clear improvement is noticed on test set C 
(except for MFCC and PS), with an increase of recognition rates 
up to 7%. Therefore, adaptive pre-emphasis may be considered as 
a complementary block for phase-based features in the presence of 
convolutional noises. 
  

Table 1: Various forms of ARGDMF. 
 

 Compression Scale 
Information 

Window 
Type Warping 

 ARGDD Double DCT •  Ch. 30 dB •  
ARGDMF1 MFB + DCT •  Ch. 30 dB •  
ARGDMF2 MFB + DCT exp( ̂(0)) Ch. 30 dB •  
ARGDMF3 MFB + DCT exp( ̂(0)) Hamming •  
ARGDMF4 MFB + DCT  ̂(0) Ch. 30 dB •  
ARGDMF5 MFB + DCT  ̂(0) Ch. 30 dB ü  

 

v MFB: Mel FilterBank, 
v DCT: Discrete Cosine Transform  
v Ch.: Chebyshev window 

 
(a)                                                 (b) 

 

Fig. 2. Various group delay-based representations for vowel /ee/, (a) 
clean signal and (b) signal contaminated with white noise at 10 dB SNR. 
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 The role of compression can be evaluated by comparing the 
performance of ARGDD and ARGDMF1. As seen, compressing 
the power spectrum through the application of a Mel filterbank 
followed by a DCT is relatively better than a double DCT 
(compression method used in ARGDD). This results in an absolute 
increase in the recognition rates by around 2%. 
 Inspecting the importance of considering the scale information 
(ARGDMF1 vs. ARGDMF2), it turns out from Tables 2 and 3 that 
employing scale information yields a notable overall improvement 
(up to 7.8% in absolute accuracies). This supports the justification 
of using scale information and highlights its complementary role. 
 A noteworthy point is that when using exp( ̂(0)) as scale 
information (ARGDMF2), augmenting the feature vector with Δ 
and ΔΔ coefficients almost does not alter recognition rates. 
Nonetheless, in the case of applying the scale information in the 
form of  ̂(0) (ARGDMF4), including the temporal derivatives 
enhances the method. Although based on Hilbert transform 
relations, the proper representation for the scale information is     ( ̂(0)), its sharp changes over adjacent frames, which are 
intensified after derivation, reduce the usefulness of augmenting 
the feature vector with dynamic coefficients. As a consequence, 
using the smoother  ̂(0) contour seems to be more suited for a 
HMM-based modeling when Δ and ΔΔ are intended to be applied.  
 Regarding the issue of choosing the appropriate window shape, 
we have shown in [19] that phase-only reconstructed speech with a 
Chebyshev window with dynamic range of 25 to 35 dB has led to 
the best quality. Results from Tables 2 and 3 (ARGDMF2 vs. 
ARGDMF3) corroborate that using an appropriate Chebyshev 
window has a considerable influence on the recognition abilities.  
 As a last factor, we inspected the effect of a feature warping 
method which was proposed originally for speaker verification 
[21]. The gap of performance after applying this technique 
(ARGDMF5) is striking: it achieves higher recognition rates with 
an absolute increase of 9% in Table 2 and of around 6% in Table 3.   
 Finally Fig. 3 shows the evolution of the performance as a 
function of SNR, for our ARGDMF4 technique and 3 
representative state-of-the-art methods. For a fair comparison, 
results of ARGDMF5 are not displayed in Fig. 3 since feature 
warping can be applied to other phase-based methods and is not a 
block specific to our proposed technique. The improvement 
brought by the proposed approach becomes clear at SNRs below 
20 dB. It is observed to significantly outperform other methods at 
low SNRs with an absolute raise of recognition rates up to 20%. 

Table 2: Average (0-20 dB) word accuracy in percent*. 
 

 TEST SET 
A 

TEST SET 
B 

TEST SET 
C 

MFCC 56.5 (56.1) 59.8 (60.4) 54.4 (57.8) 
MODGDF 59.4 (59.3) 62.2 (62.6) 58.1 (54.3) 
MODGDF-CC 59.7 (56.0) 62.5 (61.4) 58.2 (52.0) 
PS 56.3 (55.2) 60.0 (58.5) 54.7 (57.3) 
CGDF 55.8 (55.0) 59.3 (59.0) 55.3 (47.1) 
ARGDD 62.5 (62.2) 65.9 (65.7) 65.8 (61.5) 
ARGDMF1 64.5 (64.6) 65.8 (66.1) 67.2 (60.5) 
ARGDMF2 72.3 (72.0) 73.3 (73.8) 72.6 (67.4) 
ARGDMF3 67.0 (66.9) 70.1 (70.6) 66.8 (64.5) 
ARGDMF4 66.4 (64.1) 67.8 (67.1) 67.0 (57.3) 
ARGDMF5 75.2 (74.1) 76.3 (75.4) 76.1 (69.0) 

 
Table 3: Average (0-20 dB) word accuracy in percent*. 

 

 TEST SET 
A 

TEST SET 
B 

TEST SET 
C 

MFCC-D-A 62.7 (62.3) 66.9 (67.2) 60.0 (63.4) 
MODGDF-D-A 64.0 (63.1) 67.7 (67.0) 62.6 (57.6) 
MODGDF-CC-D-A 63.7 (61.2) 66.4 (68.1) 62.3 (58.3) 
PS-D-A 63.4 (61.7) 67.0 (66.6) 60.2 (63.3) 
CGDF-D-A 63.1 (62.3) 67.8 (67.2) 61.9 (55.1) 
ARGDD-D-A 68.3 (67.2) 71.3 (71.2) 69.9 (65.0) 
ARGDMF1-D-A 69.7 (69.1) 72.5 (72.8) 71.9 (66.3) 
ARGDMF2-D-A 72.1 (71.2) 75.0 (74.9) 73.6 (67.9) 
ARGDMF3-D-A  69.6 (68.2) 73.7 (73.8) 69.7 (67.3) 
ARGDMF4-D-A 74.7 (73.4) 77.9 (77.4) 75.6 (68.9) 
ARGDMF5-D-A 81.0 (80.0) 81.7 (81.1) 83.8 (77.9) 

 

∗ Numbers outside and inside the parentheses correspond to adaptive 
and fixed pre-emphasis approaches, respectively.  
 

5. CONCLUSION 
 
In this paper we proposed a novel robust phase-based feature 
extraction algorithm for speech recognition. It consists of four 
main steps: autoregressive (AR) model extraction, group delay 
computation, compression, and scale information augmentation. 
The proposed method, called ARGDMF, was shown to 
substantially outperform the state-of-the-art in the presence of both 
additive and convolutional (channel) noises. This work therefore 
tends to prove that using appropriate phase-based features can 
yield a relevant representation of speech, with high applicability 
potentials among which a remarkable robustness. 

 
   (a)                                                                             (b)                                                                             (c) 

 

Fig. 3. Recognition rate as a function of SNR, after adaptive pre-emphasis (except for MFCC). In all cases, the feature vector consists of 36 
coefficients including their static (12), Delta (12), and Acceleration (12) forms. (a) test set A, (b) test set B, (c) test set C. 
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