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ABSTRACT

State tying effectively strikes a balance between detailed mod-
eling and robust parameter estimation for hidden Markov mod-
els (HMMs) in automatic speech recognition. However, triphone
HMMs that are tied to the same state are not distinguishable in
that state. Recently we proposed the idea of distinct acoustic
modeling in which no states are tied. In our novel clustered-
based eigentriphone modeling method, triphones (or states) are
grouped into non-overlapping clusters, from each of which, an
orthogonal eigenbasis is derived using weighted PCA. Then all
member triphones (or states) of a cluster are projected as distinct
points onto the space spanned by its eigenvectors.

In this paper, we propose a new simpler training method
called reference model weighting (RMW) which removes the re-
quirement of an orthogonal basis in eigentriphone, and directly
uses a set of reference model vectors in a cluster as the basis. All
member model vectors are then constrained to lie in the space
spanned by these reference model vectors. The difference be-
tween eigentriphone modeling and reference model weighting
is analogous to the difference between eigenvoice and reference
speaker weighting in speaker adaptation. The new RMW method
shows consistently better performance than eigentriphone and the
baseline tied-state HMMs in WSJ0 word recognition and TIMIT
phoneme recognition.

Index Terms— eigenvoice, eigentriphone, regularization,
state tying, acoustic modeling

1. INTRODUCTION

Context-dependent (CD) acoustic modeling is crucial in auto-
matic speech recognition (ASR). Usually it is impractical to col-
lect enough training data for all CD acoustic units. It is observed
that about 20% of distinct triphones account for around 80% of
all triphone occurrences [1]. That is, the distribution of train-
ing data among CD units is very uneven, and the phenomenon
is observed for both small and large corpora1. Naive maximum-
likelihood (ML) estimation would yield poor recognition perfor-
mance for those CD units with sparse training data. Parameter
tying [2] is a common solution for the problem. It effectively re-
duces the model size and improves recognition speed at the same
time. Among the various model parameters that have been tied
successfully, state tying [3] is the most popular approach in CD
acoustic modeling. Usually states are tied through a regression
class tree using phonetic knowledge, and the depth of the tree
naturally controls the degree of state tying. Another direction is
the basis approach, in which bases or atoms are constructed and
model parameters are derived from them as a linear combination
of some basis vectors or functions, or by some transformation.

1Except for artificially designed speech corpora, simply collecting
more data does not solve the problem because more data only means
more distinct triphones which will still be unevenly distributed.

Semi-continuous hidden Markov model (SCHMM)[4], subspace
Gaussian mixture model (SGMM) [5], and the canonical state
model [6] are some successful examples.

Regardless of which parameter tying method and/or basis
approach is used, states are usually tied in an ASR system. A
shortcoming of state tying is that it inevitably introduces “quan-
tization errors”: triphones tied to the same state are not distin-
guishable in that state. Recently we proposed the idea of dis-
tinct acoustic modeling in which no states are tied so that the
quantization errors may be avoided. To robustly train the en-
suing distinct triphone models which consist of no tied states,
we also proposed the eigentriphone modeling (ETM) approach.
Inspired by the eigenvoice method in speaker adaptation, an or-
thogonal eigenbasis is derived from the triphones of a base phone
in model-based ETM. The eigenvectors are obtained by weighted
principle component analysis (PCA) [7], and the eigenvectors are
also called eigentriphones. Then all the triphone hidden Markov
models (HMMs) of the base phone are projected as distinct points
onto the space spanned by the eigentriphones, and the projections
are estimated using a regularized form of the maximum likeli-
hood eigen-decomposition (MLED) [8]. The model-based ETM
is later generalized to cluster-based ETM [9]. In cluster-based
ETM, triphones states are grouped into clusters, and eigentri-
phones are derived from each state cluster. By controlling the
number and the size of clusters according to the amount of train-
ing data, cluster-based ETM allows more flexible control over the
finer acoustic details to be modeled robustly.

ETM works well and outperforms conventional tied-state
HMMs. It involves two major steps: weighted PCA and penal-
ized MLED. When there are many Gaussian mixtures in a state,
the dimension of state Gaussian mean supervectors can be very
large and the computation of weighted PCA is slow. In this paper,
we further simplify cluster-based ETM by removing the weighted
PCA step, and directly use the state Gaussian mean supervectors
as the bases for each state cluster. The new training method is
called reference model weighting (RMW). RMW is inspired by
reference speaker weighting adaptation method [10] and cluster
adaptive training [11] just as ETM is inspired by eigenvoice.

The rest of this paper is organized as follows. In the next sec-
tion, details of the cluster-based RMW acoustic modeling method
will be described. Then in Section 3, the new method is evalu-
ated empirically in WSJ0 word recognition and TIMIT phoneme
recognition. Finally we will make the conclusions in Section 4.

2. CLUSTER-BASED REFERENCE MODEL
WEIGHTING OVER STATE CLUSTERS

Although in general, the cluster-based reference model weighting
(RMW) method may be applied over clusters of many acoustic
units such as phones or triphones, in this paper, we follow the ap-
plication of cluster-based eigentriphone modeling (ETM) method
over state clusters in [9] and apply it over clusters of states.
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2.1. State Clustering

While there are many ways to cluster states using various dis-
tance metrics, we follow the successful use of phonetic decision
tree in state tying [3] and clustered-based ETM [9] to cluster
states in our cluster-based RMW. In fact, the nodes in the same
state-tying tree that is commonly used for building tied-state hid-
den Markov models (HMMs) are candidates of our state clusters.
The optimal choice of nodes will be determined empirically us-
ing a development set of speech data for a given task2.

2.2. Basic Procedure

The training procedure of cluster-based RMW is modified from
that of cluster-based ETM as follows [9].

The selected nodes in the state tying tree are considered as
tied states, and a conventional tied-state triphone HMM system is
trained. Each triphone model is a 3-state left-to-right HMM, and
each state is an M -component Gaussian mixture model (GMM).
Then the selected nodes are treated as state clusters, and the fol-
lowing procedure is repeated for each state cluster q to find the
reference states and to project the remaining member states as a
linear combination of the reference states.

STEP 1 : Clone the tied-state GMM to all the member states in
the state cluster q.

STEP 2 : Re-estimate only the Gaussian means of the cloned tri-
phone states in STEP 1 for those triphones which have at least
3 training samples3. At the same time, collect the zeroth-
and first-order statistics on the training data of each Gaus-
sian component m of state j in state cluster q — that is,
its soft occupation count,

P
t γqjm(t), and its mean vector,P

t γqjm(t)xt, where xt is the acoustic vector at frame t.
Furthermore, the soft occupation count for each state j may
be computed by summing up the occupation counts of all its
mixture components as

P
t

P
m γqjm(t). We will call the

resulting system the untied-state HMM system.

STEP 3 : Based on a threshold θ on the sample count, split the
member states of the cluster Ωq into two groups: the frequent
state set ΩF

q and the infrequent state set ΩI
q .

STEP 4 : Stack up the M Gaussian means {µqjm, m =
1, . . . , M} of state j in the frequent state set ΩF

q according
to their order in the original tied-state GMM onto a Gaussian
mean supervector vqj ≡ [µ′

qj1 , µ′
qj2 , · · · , µ′

qjM ]′. In ad-
dition, a Gaussian mean supervector vq0 is constructed sim-
ilarly for the tied state which will be indexed by j = 0.

STEP 5 : Form the set of reference models, or more specifically,
the reference state supervectors, ΩR

q , using the mean super-
vectors from the tied state and the frequent states. That is,
ΩR

q ≡ {vqj : j = 0 ∪ j ∈ ΩF
q }.

STEP 6 : Take the set of reference state supervectors ΩR
q as a

basis, and assume that all infrequent state supervectors of
cluster q lie in the vector space spanned by the basis. Let
Bq = [vq0 vqj1 · · · vqjKq

] be the matrix of the basis vec-

tors, where jk ∈ ΩF
q and Kq = |ΩF

q | is the number of the
reference models in cluster q. The Gaussian mean supervec-
tor vqi of each infrequent state i ∈ ΩI

q is modeled as

2Note that although the nodes selected for conventional tied-state
HMMs and cluster-based RMW come from the same phonetic decision
tree, they need not be the same for the two procedures.

3We followed HTK’s general practice and only re-estimated models
that have at least 3 training samples.

vqi =
X

j∈ΩR
q

wqijvqj = Bqwqi (1)

where wqi = [1 wqij1 · · · wqijKq
]′ is the (interpolation)

weight vector of the infrequent state i. Note that the weight
for the tied-state mean supervector vq0 is fixed to 1; vq0 is
treated as a bias for the estimation of vqi.

STEP 7 : Estimate the weight vector wqi by maximizing the fol-
lowing log-likelihood L(wqi) of its training data after re-
moving all the irrelevant terms:

−
X
t,m

γqim(t)(xt − µqim)′C−1
qm(xt − µqim) (2)

where Cqm is the covariance matrix of the mth Gaussian
component of the original tied state that corresponds to state
cluster q. Substitute Eq. (1) to Eq. (2) and take its first order
derivative. Setting the derivative to zero, we haveX

t,m

γqim(t)B′
qmC−1

qm(xt −Bqmwqi) = 0

⇒ wqi =

"X
m

 X
t

γqim(t)

!
B′

qmC−1
qmBqm

#−1

"X
m

 X
t

γqim(t)xt

!
B′

qmC−1
qm

#
(3)

where Bqm is the sub-matrix of Bq when only the rows cor-
responding to the mth Gaussian component of the reference
mean supervectors are considered.

During the estimation process, only the Gaussian means of
the infrequent states are re-estimated. The other HMM param-
eters such as the Gaussian covariances, transition probabilities,
and mixture weights are not updated; that is, they are the same as
the baseline tied-state HMMs.

2.3. Improved Procedure Using Regularization

In STEP 3 of the basic procedure, one has to classify a state as
frequent or infrequent based on a fixed threshold θ on its sam-
ple count. Although θ may be determined empirically, such hard
decision does not take into account the wide distribution of sam-
ple counts among the states. In addition, it is more logical to
put more weight to reference models/states that are better trained
with more data.

Hence the RMW procedure is further enhanced by

• using all states as reference states, and the mean vectors of
all of them are re-estimated using Eq. (1). Thus, the hard
binary decision of frequent or infrequent states is avoided.

• penalizing the likelihood function with the addition of a
regularization term that varies according to the occupation
counts of the states: greater penalty for states with small
counts and smaller penalty for states with large counts.
The regularization term is necessary, otherwise the re-
estimated model will degenerate to the untied-state HMM
due to the maximum likelihood principle.

The following penalized log likelihood function was tried:

L̂(wqi) = L(wqi)−
X

k∈Ωq

λ

2
P

t,m γqim(t)
||wqik||2 (4)
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where λ is the regularization parameter which has to be tuned
empirically on a separate set of development data. The closed-
form solution is given by

wqi =

"X
m

 X
t

γqim(t)

!
B′

qmC−1
qmBqm + R

#−1

"X
m

 X
t

γqim(t)xt

!
B′

qmC−1
qm

#
(5)

where R is a diagonal matrix, and

R =
λP

t,m γqim(t)
· I|Ωq|×|Ωq| .

Table 1. Details of various WSJ0 and TIMIT data sets.

Data WSJ0 TIMIT
#speaker #utterance #speaker #utterance

train 83 7138 462 3696
test 8 330 24 192
dev 10 410 24 192

3. EXPERIMENTAL EVALUATIONS

In this section, cluster-based RMW was evaluated on two
tasks: (1) continuous speech recognition on Wall Street Journal
WSJ0 [12], and (2) phoneme recognition on TIMIT [13]. In both
tasks, RMW is compared with conventional tied-state triphone
hidden Markov modeling and eigentriphone acoustic modeling.

3.1. Experiment Setup

3.1.1. WSJ0 Continuous Speech Recognition

The standard WSJ0 SI-84 training set with 15 hours of speech
was used for acoustic modeling. Evaluation was performed on
the standard Nov92 5K non-verbalized test set, and the si dt 05
data set was used as the development set for tuning system pa-
rameters such as the regularization parameter, decoding parame-
ters, as well as for finding the optimal state-tying nodes and state
clusters. Finally, a bigram language model (LM) with a perplex-
ity of 147 was employed in this recognition task.

3.1.2. TIMIT Phoneme Recognition

Acoustic modeling used the standard TIMIT training set of about
3.14 hours of speech, and all systems were evaluated on the core
test set with 192 utterances. Viterbi decoding used a trigram
phone LM with a perplexity of 14.39 that was trained from the
TIMIT training transcriptions using the SRILM language model-
ing toolkit. We followed the standard experimentation on TIMIT,
and collapsed the original 61 phonetic labels in the corpus into a
set of 48 phones for acoustic modeling. The latter were further
collapsed into the standard set of 39 phonemes for error report-
ing. Moreover, the glottal stop [q] was ignored.

Details of the various data sets are listed in Table 1.

3.2. Acoustic Modeling

In all experiments, acoustic vectors were extracted at every 10ms
over a window of 25ms. The traditional 39-dimensional MFCC
vectors were used; they consist of 12 MFCCs and the normalized
frame energy, and their 1st- and 2nd-order time derivatives. Con-
ventional tied-state triphone HMM baselines were constructed

Table 2. Details of the tied-state triphone HMM baselines.

Tied-state HMM Baseline WSJ0 TIMIT

#tied states 1254 587
#mixtures/state 32 16
#physical triphones 15,337 15,547
#triphones (count ≥ 3) 11,747 7,902
Word/Phoneme Acc. on dev set 92.15% 75.08%
Word/Phoneme Acc. on test set 93.29% 72.04%
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Fig. 1. WSJ0 recognition performance when the reference mod-
els are determined by thresholding on their sample counts.

for WSJ0 and TIMIT using the HTK toolkit. In both baseline
systems, the number of tied states and the number of mixture per
state were tuned using the respective development data set. Ta-
ble 2 shows details of the two baseline systems.

3.3. Experiment 1: Reference Models Determined by
Thresholding on the Occupation Counts

The basic procedure of Section 2.2 was applied to train cluster-
based RMW models by varying the sample count threshold θ,
and the effect on RMW’s performance is shown in Fig. 1 to-
gether with the tied-state HMM baseline on both the test and
development data sets. We see that some, though insignificantly
small, improvement may be achieved when θ is appropriately set.
However, the performance is actually worse when θ gets below
150. Note that when θ = 0, the model becomes the untied-state
HMM. The result is expected: when θ is small, many of the ref-
erence models are actually poorly trained, and one cannot expect
good models coming out of bad reference models.

3.4. Experiment 2: Using all Models as Reference Models
and Regularization

WSJ0 recognition was repeated with the improvement suggested
in Section 2.3 by taking all states in a state cluster as the set
of reference models, and applying the regularization of Eq. (4).
The effect of the regularization parameter λ on the performance
of RMW is shown in Fig. 2. Since the soft occupation countP

t,m γqjm(t) is in terms of frame (and each frame is 10ms), its
value is quite large. When λ = 0, the system again is equivalent
to an untied-state HMM system. From Fig. 2, one can see that
λ has to be sufficiently large to mitigate the negative impact of
the poor reference models on RMW training. On the other hand,
once λ is set above 200,000, the resulting models perform equally
well until λ becomes too large (above 2,400,000 in this example)
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Fig. 2. Effect of regularization on WSJ0 recognition performance
when all states in a cluster are adopted as the reference models.

and the effective number of reference models becomes too small.
Most importantly, when λ is properly tuned, the resulting models
significantly outperform the tied-state HMM baseline system.

3.5. Experiment 3: RMW vs. Eigentriphone with Reduced
Reference Set

Cluster-based RMW simplifies cluster-based ETM by removing
the construction of an orthogonal basis using weighted PCA for
each state cluster. We implemented the latest cluster-based ETM
in [9] and compared the two methods on TIMIT phoneme recog-
nition. Since it has been shown that ETM works well with re-
duced numbers of eigenvectors4 [7], during the comparison, we
also tried to reduce the set of reference models in RMW cor-
respondingly. Whereas ETM reduces the number of eigenvec-
tors for modeling according to their eigenvalues, RMW reduces
the number of reference models/states according to their occu-
pation counts. Note that reducing the reference models in the
regularized RMW is different from the basic RMW because (1)
the former uses a penalized likelihood training criterion, and (2)
all states, including the reference states (and not only infrequent
states), are re-estimated in regularized RMW.

The comparison on TIMIT phoneme recognition using dif-
ferent proportions of reference states or eigentriphones is shown
in Fig. 3. From the figure, it is observed that cluster-based ETM
reaches its optimal performance when 60% of eigenvectors are
kept, while cluster-based RMW gets its best performance when
all states are used as reference states. However, RMW always
performs better than the optimal ETM result if at least 40% of
reference states are used. When the same proportion of reference
states or eigentriphones is used, RMW always performs better
than ETM. We believe that the regularization using occupation
counts in RMW is more effective than the regularization using
the eigenvalues of the selected eigentriphones in ETM.

3.6. Summary

The recognition performances of the tied-state HMM baseline,
cluster-based eigentriphone modeling (ETM), and cluster-based
reference model weighting method (RMW) on WSJ0 and TIMIT
are summarized in Table 3. The summary shows that

• by comparing the performance of tied-state HMM and
untied-state HMM, we see that state tying successfully

4The main reason for reducing the number of eigenvectors to use in
ETM is to reduce the final model size trained by ETM.
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Fig. 3. Comparison between RMW and ETM when different pro-
portions of reference states or eigentriphones are used.

solves the robust parameter estimation problem of tri-
phones that have little amount of data.

• cluster-based ETM and RMW further improves the per-
formance of tied-state HMM by reducing the quantization
error in each tied state. All the recognition accuracy im-
provements are statistically significant.

• cluster-based RMW is even more effective than ETM, and
yet its training procedure is computationally simpler and
faster. At the end, RMW reduces the word error rate
(WER) in WSJ0 by 0.92% absolute, and the phone error
rate (PER) in TIMIT by 1.35% absolute.

Table 3. Summary of results. Results with ‘*’ are significantly
better than the tied-state HMM baseline system.

Model WSJ0 TIMIT

untied-state HMM 89.84% 68.83%
tied-state HMM 93.29% 72.04%
eigentriphones (ETM) 93.89%∗ 72.90%∗

reference model weighting (RMW) 94.13%∗ 73.39%∗

relative WER/PER reduction 12.5% 4.8%

4. CONCLUSIONS AND RELATION TO PRIOR WORK

Although state tying [3] effectively solves the robust parameter
estimation problem of acoustic units that have little amount of
training data, it inevitably introduces quantization errors among
the states that are tied together. Eigentriphone acoustic model-
ing [1, 14, 7, 9] successfully eliminates the quantization errors by
untying the states in tied-state HMM, and then representing the
untied states as distinct points in the space spanned by an eigen-
basis for each state cluster. From another perspective, one may
treat eigentriphone modeling of an untied state as the eigenvoice
adaptation [8] of the untied state from its tied state. Thus, one
may apply other adaptation methods as well. In this paper, in-
spired by the advantage of reference speaker weighting [10] and
cluster adaptive training [11] over eigenvoice in speaker adap-
tation, we propose reference model weighting (RMW). Specifi-
cally, RMW removes the need of constructing an orthogonal ba-
sis for each state cluster in eigentriphone modeling. The use of a
regularizer that directly relates to the occupation counts of each
reference state seems to account for its better performance over
eigentriphone modeling.
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