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ABSTRACT

In the context of the acoustic-to-articulatory inversion, var-

ious unsupervised HMM based feature-mapping methods

are assessed and compared. In a previous study we intro-

duced an unsupervised HMM as an alternative model to the

phone-HMM. We propose here to evaluate this approach

using different inversion methods, in order to assess the

behavior of our model and its compatibility with the most ef-

ficient inversion algorithms available. The best configuration

leads to similar root mean square error (up to 1.44 mm) than

phoneme-based HMM.

Index Terms— Acoustic-to-articulatory inversion, Unsu-

pervised Hidden Markov Models, Trajectory models

1. INTRODUCTION AND RELATION TO PREVIOUS

WORK

Acoustic-to-articulatory inversion aims to estimate the shape

of the mouth - position of jaw, tongue, lips - from an audio

speech signal.

Most strategies consist of jointly modeling acoustic and

articulatory data, and using the correlation between these data

to generate the articulatory parameters from the acoustic ones.

Two main approaches have been explored for the joint

modeling of acoustic and articulatory data: Gaussian

Mixture Models (GMM), and Hidden Markov Models

(HMM).

In the GMM approach [1, 2, 3], the joint distribution of

acoustic and articulatory parameters is a Gaussian Mixture

Model. The inversion is performed either by a classical map-

ping using minimum mean square error (MMSE) [1] or max-

imum likelihood estimation (MLE) criterion [1, 2], or by con-

sidering an explicit relationship between static and dynamic

features with trajectory GMMs [3].

The HMM approach [3, 4, 5, 6] lies on two HMMs, which

model respectively the acoustic and the articulatory param-

eters. Both HMMs are usually jointly trained using multi-

stream HMMs. The inversion step always begins using an

audio decoding with the acoustic HMM and determining a se-

quence of phone states. The articulatory parameter sequence

is synthesized using a trajectory HMM [4, 5, 6, 7]. An im-

provement [3] is obtained by training a trajectory HMM to

decode the acoustic observations as well as synthesizing the

articulatory parameters. All these approaches need to have a

phoneme labeled acoustic-articulatory database.

In a previous study [8], we proposed an unsuper-

vised joint HMM as an alternative model. This method

has shown encouraging results using very basic inversion

methods. To complete this study, we explore different

acoustic decoding, and different inversion methods, in or-

der to assess the behavior of the unsupervised model and

its compatibility with the most efficient state-of-the-art

inversion algorithms.

The description of the experimental corpora in section 2

is followed by a summary of the basics of the unsupervised

HMM training. Then we present in section 4 the different

strategies used for the inversion procedure with a discussion

of their assessment in section 5.

2. ACOUSTIC-ARTICULATORY DATASETS

2.1. ARTIS corpus

This acoustic-articulatory corpus has been developed by the

GIPSA-Lab in Grenoble, France. It has already been used to

assess several studies on acoustic-to-articulatory inversion [4,

8, 9, 10].

This corpus contains data recorded by one French male

speaker. It is composed of 224 Vowel-Consonant-Vowel

(VCV), two repetitions of 109 short Consonant-Vowel-

Consonant (CVC) French words, 68 short sentences and

20 long sentences.

Articulatory data are recorded thanks to an Electromag-

netic Articulograph (EMA), and consists of two coordinates

(x, y) in six points, in a mid-sagittal plane. These points are

positioned on the upper and lower lip, jaw, tongue tip, middle

and back. Their 12 derivatives are added to these coordinates,

to give the articulatory observation vector O
(art)
t .

Monophonic audio data are recorded simultaneously with

the articulatory coordinates at a 16 kHz sample rate. They

are parametrized with 12 MFCCs, log energy and their first

derivatives. All these parameters are computed every 10ms,
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which gives synchronous acoustic and articulatory data.

Throughout this article, the 26-coefficients audio vector at

frame-time t will be noted O
(ac)
t .

2.2. MOCHA-TIMIT corpus

The Multichanel Articulatory Database is an acoustic-to-

articulatory corpus developed by the "Centre for Speech

Technology Research," University of Edinburgh, Scotland [11].

This corpus has also been used in several international publi-

cations [1, 3, 12], and is available online1.

This corpus contains data from two English speakers, one

male (with a Northern English accent) and one female (with

a Southern English accent). It is composed, for each speaker,

of 460 long sentences.

As for the ARTIS database, it is composed of synchronous

acoustic and articulatory (EMA) data, computed every 10 ms.

Articulatory data are represented by 7 coordinates (x,y) po-

sitioned on the upper and lower lips, jaw, velum, tongue tip,

middle, and back. Audio data are also recorded in WAVE for-

mat and parametrized with 12 MFCCs, log energy and their

derivatives.

2.3. Notations

Ot denotes the concatenation of these two vectors, named

“global vector” at time t: Ot =

[
O

(ac)
t

†
, O

(art)
t

†
]†

with

(·)† the transposition operator. O =
[
O

†
1, · · · , O

†
T

]†
is the

global observation vector.

3. MODEL DESCRIPTION

To be independent of any phonetic labeling, an unsupervised

training procedure [8] is used to estimate the global HMM

which represent the global observation vector O.

The training procedure is divided into three steps:

1. An unsupervised clustering is performed to distribute

the training data into Q classes. This clustering is done

with a Q mixtures GMM. Each vectorOt gets a poste-

riori a label i (1 ≤ i ≤ Q), and the temporal sequence

of the so obtained labels is stored.

2. A Q-states HMM is built. The observation probability

density function (PDF) bi of each state i, is assumed

to be Gaussian with µi =

[
µ

(ac)
i

†
, µ

(art)
i

†
]†

the mean

vector andΣi =

[
Σ

(ac)
i Σ

(ac,art)
i

Σ
(art,ac)
i Σ

(art)
i

]
the full co-

variance matrix. This PDF is estimated using the ob-

servation vectors belonging to the class i. The transi-

1http://www.cstr.ed.ac.uk/research/projects/artic/mocha.html

tion matrix A is estimated considering the transitions

between successive labels present in the training set.

3. The acoustic and articulatory sub-models M (ac) and

M (art) are easily deduced from the global model: they

both have the same transition matrixA. Their observa-

tion probability density function (PDF) b
(ac)
i and b

(art)
i

for each state i are marginal Gaussian laws of the global

Gaussian pdf with µ
(ac)
i and µ

(art)
i their mean vectors,

and Σ
(ac)
i and Σ

(art)
i their covariance matrices.

As shown previously [8], using Q = 128 states works

quite well. We note that, as the French language is roughly

made of 35 phones (44 phones for English language), and

as a classic phone-based approach is to take three states per

phones, our HMM modeling has approximately the same

number of states as phonetic HMMs.

4. ARTICULATORY VECTORS GENERATION

In order to fully assess our unsupervised modeling, we test

the performances of several known inversion methods.

As in most HMM approaches, the first step is a decoding

with the acoustic HMM, to provide a sequence of states cor-

responding to an alignment of the sequence of the acoustic

observation vectors. This state sequence is then transposed in

the articulatory model. We will first describe the two acoustic

decoding alternatives, then the different inversion methods.

4.1. Acoustic decoding - Single path approximation

The state sequence is done by considering either at each

frame t the most likely state (“Gamma” path) or the most

likely global state sequence (“Viterbi” path).

With the usual notations [13], the probability to be in each

state i at each time step t, γac
t (i) = P (qt = i|O1, · · · ,OT ) is

expressed using the α (forward) and β (backward) variables:

γ
(ac)
t (i) =

α
(ac)
t (i)β

(ac)
t (i)

∑Q

i=1 α
(ac)
t (i)β

(ac)
t (i)

α
(ac)
t (i) = P

(
O

(ac)
1 , · · · ,O

(ac)
t , qt = i

)

β
(ac)
t (i) = P

(
O

(ac)
t+1 , · · · ,O

(ac)
T |qt = i

)
(1)

The Gamma path is then determined by:

q =

[
q̃1 = argmax

1≤i≤Q

γ1(i), · · · , q̃T = argmax
1≤i≤Q

γT (i)

]

The Viterbi path q = [q̂1, · · · , q̂T ] is determined with the

Viterbi algorithm. It maximizes the probability of the whole

state sequence knowing the observations and the model.

In both cases, q = [q1, · · · , qT ] denotes the single path.

Articulatory parameter generation algorithm performances

will be assessed using their single path approximation.
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4.2. Minimum mean square error estimator

This estimator assumes that articulatory parameters follow a

Gaussian mixture model composed of all the PDFs of the ar-

ticulatory HMM:

O
(art)
t ∼

Q∑

i=1

wt(i)N (µi,Σi)

where wt(i) are the weights.
The mean square error is expressed as:

E

(∥∥∥∥Ô
(art)

−O(art)

∥∥∥∥
2
)

(2)

where E is the stochastic expectation.

Minimizing the mean square error in Equ. (2) gives the

Minimum Mean Square Error (MMSE) estimator:

Ô
(art)

t =

Q∑

i=1

γ
(ac)
t (i)µ

(art)
i (3)

An approximation of the MMSE estimator is obtained by

pruning the sum in Equ. (3) to its most prominent term: q̃t =

argmax
i=1,...,Q

γ
(ac)
t (i). This simplified estimator consists in using

the “Gamma” path, so it is thereafter called the Single Path

(SP) estimator with a “Gamma” decoding.

By substituting the “Gamma” path by the “Viterbi” path,

we obtain another approximation of the MMSE estimator,

thereafter named Single Path (SP) with a “Viterbi” decod-

ing; it is given by:

Ô
(art)SP

t = µq̂t
(4)

Experiments in [8] have shown that the SP approxi-

mations have performances similar to the MMSE method.

Therefore, in the following inversion methods, we will con-

sider the single path approximation and its two path decoders:

“Gamma” and “Viterbi”.

4.3. Maximum Likelihood

An extension of the previous method is to take into account

the value of the acoustic vector. This is done by using the

classical GMM mapping function [1]: the Maximum Likeli-

hood (ML). In the framework of a single path approximation,

this estimator is given by equations 5:

Ô
(art)

t = µqt
+Σ

(ac,art)
i Σ

(ac)−1

i (O
(ac)
t − µqt

) (5)

where Σ
(ac,art)
i and Σ

(ac)
i are the cross acoustic/articulatory

covariance and the acoustic covariance of the observation pdf

bi of the i
th state.

4.4. Trajectory feature mapping

We propose here to test our model with the Trajectory mod-

els [7], in which the link between static features and their

derivatives are explicitly modeled.

If we note C
(ac)
t and C

(art)
t the static parts of O

(ac)
t and

O
(art)
t , and Ct =

[
C

(ac)
t

†
, C

(art)
t

†
]†

thus we can write the

following equation:

O = W
[
C

†
1, · · · , C

†
T

]†
(6)

W =




. . .
...

...
...

...

· · · 0 1 0 0 · · ·
· · · −1 1 0 0 · · ·
· · · 0 0 0 1 · · ·
· · · 0 0 −1 1 · · ·

...
...

...
...

. . .




W is the derivation matrix and O is the global observation

vector.

The generated articulatory parameters C(art) are a solu-

tion of the maximization of the log likelihood log P
(
O(art)|q

)

subject to the dynamic constraint expressed in Equ. (6) where

q is the state sequence determined using the acoustic HMM

decoding.

An extension which takes into account the value of the

acoustic vector is proposed by Zen et al. [3]. The Corrected

Trajectory estimator is the solution of the equation:

Ĉ
(art)

= E
(
C(art)|C(ac)

)
(7)

5. EXPERIMENTS AND RESULTS

5.1. Experimental protocol and Metrics

In every experiment, a 5-fold cross-validation method is used.

The corpus is split into five phonetically equivalent parts.

The models used in every experiment are exactly the same

ones, which allows proper comparison of the different decod-

ing and inversion methods.

Results are classically given in terms of root mean square

error (RMSE) in millimeters, and Pearson product-moment

correlation coefficient (PMCC).

5.2. Results

The results presented in this section show that our model can

achieve state-of-the-art performances.

Table 1 and 2 present results obtained with each system

configuration, on both corpora. A configuration is defined

by the nature of the state path (“Viterbi” or “Gamma”) and

the inversion method (“SP”, “MMSE”, “ML”, “Trajectory”

or “Corrected Trajectory”).
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For comparison purposes, we have given the best results

obtained by the GipsaLab on the ARTIS corpus [10]. This

method uses phonetic HMMs, trained with the Minimum

Generation Error (MGE) criterion, and an inversion step

using Trajectory HMMs achieves a RMSE of 1.49 mm.

On the MOCHA-TIMIT corpus, Zen et al. [3] reach, on

the male speaker a RMSE of 1.52 mm with a trajectory pho-

netic HMM, and a RMSE of 1.13mmwith a trajectory GMM.

A maybe surprising fact is that there is no difference be-

tween the MMSE inversion method and its Gamma single

path approximation in term of precision. This confirms that

the unsupervised model used truly has a HMM behavior:

in most instants only one state has a great probability. The

Viterbi single path approximation gives even better results,

which allows us to consider either the Gamma or the Viterbi

single path approximations in other inversion methods.

Table 1. RMSE (in mm) and PMCC on the ARTIS corpus,

with the different decoding and inversion methods.

Decoding Inversion RMSE PMCC

Gamma SP 2.28 0.54

Viterbi SP 2.18 0.56

None MMSE 2.27 0.54

Gamma ML 1.87 0.61

Viterbi ML 1.77 0.64

Gamma Trajectory 1.86 0.66

Viterbi Trajectory 1.78 0.68

Gamma Corrected Trajectory 1.49 0.72

Viterbi Corrected Trajectory 1.49 0.72

Taking into account the value of the acoustic vector is

clearly a great improvement of any method, since it improves

the RMSE from 16 to 35 percents (0.3 - 0.5 mm). In fact,

this allows us to generate various articulatory vectors from

the same state sequence, by taking into account the acoustic

variability.

With all inversion methods a Viterbi decoding leads to

better results, probably because considering the sequence al-

together in the decoding phase is more coherent with the no-

tion of trajectory, which also considers the sequence alto-

gether.

Finally, as shown before by other studies, using trajectory

HMM to explicitly represent the link between static and dy-

namic component of the same vector is a great improvement,

in both RMSE and in terms of correlation.

6. CONCLUSION

In this article we fully compared different acoustic decoding

and articulatory parameter generation methods with an un-

supervised HMM modeling. We therefore now have a pre-

cise idea of the improvement brought by each algorithm. It

Table 2. RMSE (in mm) and PMCC on the MOCHA-TIMIT

corpus for both speakers, with the different decoding and in-

version methods.
male / female

Decoding Inversion RMSE PMCC

Gamma SP 1.85 / 1.92 0.63 / 0.64

Viterbi SP 1.73 / 1.83 0.69 / 0.68

None MMSE 1.83 / 1.91 0.64 / 0.65

Gamma ML 1.64 / 1.71 0.71 / 0.71

Viterbi ML 1.55 / 1.64 0.75 / 0.73

Gamma Trajectory 1.85 / 1.92 0.63 / 0.64

Viterbi Trajectory 1.73 / 1.82 0.69 / 0.68

Gamma Cor. Traj. 1.44 / 1.52 0.82 / 0.80

Viterbi Cor. Traj. 1.44 / 1.52 0.82 / 0.80
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Fig. 1. Reconstructed trajectory for the lower lip for the sen-

tence “Faire la nouba” [fEKlanuba] with various methods us-

ing “Viterbi” decoding.

also validates the potential of such an unsupervised HMM ap-

proach in articulatory parameter generation.

Our main interest will now be to improve the training, us-

ing other criterion such as Minimum Generation Error, and to

take the static/dynamic relationship into consideration during

the training phase. We will also adapt our method for inter-

speaker and inter-language acoustic-to-articulatory inversion.
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