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ABSTRACT 
In this paper, we update our previous research for Mel-Frequency 

Cepstral Coefficient (MFCC) feature extraction [1] and describe 

the optimizations required for improving throughput on the 

Graphics Processing Units (GPU). We not only demonstrate that 

the feature extraction process is suitable for GPUs and a substantial 

reduction in computation time can be obtained by performing 

feature extraction on these platforms, but also discus about the 

optimized algorithm. Using one GTX580 GPU our approach is 

shown to be approximately 97x faster than a sequential CPU 

implementation, enabling feature extraction to be performed at 

under 0.01% real-time. This is significantly faster than prior 

reported results implemented on GPUs, DSPs and FPGAs. 

Furthermore we demonstrate that multiple MFCC features can be 

generated for a set of predefined Vocal Tract Length Normalization 

(VTLN) alpha parameters with little degradation in throughput, 

along with the optimization for filter bank and reductions. 

Index Terms-- Continuous Speech Recognition, MFCC Feature 

Extraction, Graphics Processing Units, CUDA 

 

1. INTRODUCTION 
There have been a number of efforts over the past decades to 

improve the throughput of MFCC feature extraction. As highly 

optimized approaches already exist for the CPU [2], research has 

typically investigated optimizing acoustic feature extraction on a 

number of specific hardware platforms, including FPGAs [3,4], 

DSPs [5] and GPUs [6,7,8].The feature extraction approaches 

typically used in speech recognition are highly parallelizable. 

FPGA based acoustic feature extraction has been investigated in 

prior works, including [3,4]. These approaches all performed 

significant faster than a CPU implementation and in [4] a 150x 

relative speedup compared to a CPU/Matlab baseline was obtained. 

Using this approach MFCC feature extraction was performed at 

0.09% real-time. In addition to FPGAs, Digital Signal Processor 

(DSP) platforms are also well suited for acoustic feature extraction. 

In [5], real-time MFCC feature extraction was implemented using 

TMS320C6713 floating point Digital Signal Processor for a simple 

Support-Vector-Machine SVM-based digit recognition task. 

Due to the highly parallel structure GPUs are also well suited for 

acoustic feature extractions. In comparison to FPGAs and DSPs, 

GPUs are also much more flexible, a GPU can be used for a variety 

of tasks, including speech recognition decoding [9] speaker 

classification [10], and acoustic model [11] and neural-network [12] 

training. Modern GPU architectures, such as Compute Unified 

Device Architecture (CUDA) [13], also allow multiple processes to 

be run synchronously on a single GPU processor. This makes 

GPUs an ideal platform for high-throughput acoustic feature 

extraction, as it offers both highly parallel hardware architecture to 

maximize computational throughput along with the flexibility to 

perform and switch between complex computational tasks, 

including speech recognition decoding, and acoustic model training 

which are difficult to implement on FPGA or DSP platforms. The 

availability of general-purpose programmable GPU and data 

parallel programming models [14] has opened up new 

opportunities for parsing feature extraction at orders of magnitude 

faster than before. This is further empowered by new algorithms 

and implementation techniques that focus on parallel scalability 

[15], which expose the fine-grained concurrency in computation 

intensive applications and exploits the concurrency on highly 

parallel many core microprocessors. 

A number of prior works [6,7,8] have investigated MFCC 

feature extraction on GPU platforms. In [6], a speedup of 7x-16x 

over a CPU implementation was obtained; and in [7], Talakoub and 

Yi proposed a CUDA-based implementation, which obtained a 

5.8x speedup compared to the CPU. They blamed the relatively 

low throughput obtained on the GPU to open issues with their FFT 

optimization, and limited optimizations performed within their 

CUDA implementation, which they have yet to resolve. In [8], 

Zhang et. al. implemented MFCC feature extraction using CUDA 

on the Nvidia Fermi architecture. Although all the above 

approaches obtained significant improvement compared to the 

CPU, in most cases they used poorly optimized CPU baseline for 

comparison. For example, in [8], the CPU baseline was 

approximately 350x slower than the implementation we used in 

this paper, so even it announces about 348x ratio(����/	����) [8], 

the real speedup is much less than our implementation. 

Following up our previous paper [1], we optimize the algorithm 

by developing a more effective implementation for feature 

extraction to best leverage the available memory resources and 

synchronization capabilities. As we know that the computational 

cost of MFCC extraction takes relatively small portion of entire 

speech recognition, through our research, we expect to open the 

opportunity to use GPU for the whole speech recognition. 

 

2. MFCC FEATURE EXTRACTION 
MFCC acoustic features are commonly used for feature extraction 

in modern speech recognition. In this process, the input is the 

waveform raw date which is divided into frames, of each frame 

represents 25ms speech signal with 10ms shift between two 

continuous frames. The processes on parsing different frames are 

independent and paralleled. 

 
Figure 1: MFCC Feature Extraction Waveform Input 

As illustrated in Figure 1 & 2, within a frame, there are 400 

sampling waveform data which goes through the following steps of 

MFCC feature extraction for each frame: 

ZMean Frame: Remove DC offset for 400 sample data per frame �	
� � �	
� 
 ∑ �	��������� 								1 � 
 � ��																										1�                               
w(i): waveform data  

FS: frame size -samples per frame 

Preemphasis: Boost the energy in high frequencies to enhance the 

prominence of higher formants for 400 sampling data per frame 
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Fourier Transform: Extract spectral information for discrete 

frequency bands using the 400 sampled data per frame to generate 

the real and imaginary parts for each sampling date   �:; �  <=	> ? @=
A>                                                       (5) 
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This paper use the GPU-optimized 512x512 FFT code which is 

generated using the Spiral implementation described in [14] 

 
Figure 2: MFCC Feature Extraction Steps 

Mel Filter Bank: Apply a Mel-scale filter bank and compute 

energies in each frequency band. The input contains real and 

imaginary part of 400 float point data generated by FFT and 

converts these 800 float point data into 24 filter bank data: O�P	Q� � 1127ln	1 ? STNN�                                            (7) 
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Step 3: QX	
� � �P<a		QX	
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� ] 1.0	 	                         (8.3) 

fb(i)/lw(i/lc(i)):: filter bank data & channel weights/index 

a(i): squart root of filter bank vector  

re(i)/im(i): real/imaginary part of filter bank FFT channel 

FN: filter bank number 

LO/HI: FFT indices of lopass/hipass cut-off 

Compute Cepstral Coefficients: Include the following 3 steps: 

      Calculate 0'th cepstral coefficient 

C0 � c 3�d	e∑ 	fbCiD5i789 j                                                   (9) 

      Apply DCT to filter bank to make MFCC 

OQ  	
� � c 3�dE fb	j� ∗ cos li m�d nj 
 93op5i
:89          

0 � 
 � qr 
 1                                                           (10)    

MD: MFCC dim 

      Weight/Re-scale cepstral coefficients mfcc	i� � t1 ? LT2 ∗ sin		i ? 1� ∗ πLT�w ∗ mfcc	i� 0 � 
 � qr 
 1																																				                            (11) 

LT: cepstral liftering coefficient 

Compute Delta & Acceleration Coefficients x�PyU	y� � zS��	{|9�HzS���	{H9�3                                  (12) U  	y� � }~�{�	{|9�H}~�{�	{H9�3                                       (13) 

delta(t)/acc(t): delta/ acceleration coefficient 

Energy, delta and acceleration features are appended to the cepstral 

features, resulting in a multi-dimension MFCC feature per frame. 

In the experimental evaluation performed in this paper a 39 

dimension MFCC is generated. 

VTLN: Widely used to improve the accuracy of speech 

recognition systems by reducing the spectral mismatch caused by 

variations in vocal tract lengths between speakers. In our 

implementation VTLN is applied as a piece-wise warping of the 

spectrum when applying the Mel-Filter Bank. A VTLN parameter 

of α performs a warping of:               

QU
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3. GPU SOFTWARE COMPUTING MODEL 
CUDA is the hardware and software architecture that enables 

NVIDIA GPUs to execute programs written with C and other 

languages. As illustrated in Figure 3, CUDA program calls parallel 

kernels which executes in parallel across a set of parallel threads. 

The programmer or compiler organizes these threads in thread 

blocks and grids of thread blocks. The GPU instantiates a kernel 

program on a grid of parallel thread blocks. Each thread within a 

thread block executes an instance of the kernel, and has a thread ID 

within its thread block, program counter, registers, per-thread 

private memory, inputs, and output results. 

 
Figure 3: GPU Architecture & Software Computing Model  
A thread block is a set of concurrently executing threads that can 

cooperate among themselves through barrier synchronization and 

shared memory. A thread block has a block ID within its grid. A 

grid is an array of thread blocks that execute the same kernel, read 

inputs from global memory, write results to global memory, and 

synchronize between dependent kernel calls. In the CUDA parallel 

programming model, each thread has a per-thread private memory 

space used for register spills, function calls, and C automatic array 

variables. Each thread block has a per-Block shared memory space 

used for inter-thread communication, data sharing, and result 

sharing in parallel algorithms. Grids of thread blocks share results 

in Global Memory space after kernel-wide global synchronization. 

 

4. GPU MFCC FEATURE EXTRACTION 
Feature extraction is a highly data-parallel operation. Concurrency 

exists within the processing of both individual frame and across 

multiple frames. Efficient implementation on a highly parallel GPU 

involves mapping these levels of concurrency onto available 

hardware resources while managing data working sets and 

ZMean Preemphasis Windowing
Log Raw 
Energy

DFT/FFT
Mel Filter 

Bank

Cepstral 
Coefficient

Delta, Double-
Delta
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synchronization requirements. Figure 3 illustrates the software 

computing model for MFCC feature extraction on GPU. 

4.1 Task Considerations 
In our implementation, concurrency within an individual frame is 

mapped to a thread block, and concurrency across different frames 

is mapped to different thread blocks. 

There exist significant interactions between parallel threads in 

computing the Log Raw Energy (Equation 4), the FFT (Equation 5 

& 6), the Mel Filter Bank (Equation 7 & 8) and the Cepstral 

Coefficient (Equation 9, 10 & 11). Mapping an individual frame to 

a thread block allows the efficient interactions between threads to 

take place. The only data structure that is shared between 

computations across different frames is the original raw waveform. 

Since the data structure is read-only, there is little synchronization 

necessary until the final calculation of the Delta and Double Delta 

components of the final output. 

4.2 Data Considerations 
Feature extraction involves a series of computationally inexpensive 

steps such as Preemphasis (Equation 2), Windowing and Log Raw 

Energy calculations (Equation 3 & 4). Many of these steps can be 

easily parallelized. Given the limited availability of the fast shared 

(scratch pad) memory on a GPU, the data working set must be 

carefully managed. To do this we buffer the intermediate results in 

temporary data structures that fit into the shared (scratch pad) 

memory on the GPU, thus significantly reducing the need to wait 

for long latency off-chip memory accesses. 

4.3 Synchronization Considerations 
In the Mel Filter Bank (Equation 7 & 8) and FFT (Equation 5 & 6) 

step, significant synchronization challenges exist for a highly 

parallel implementation. We chose to leverage work from the 

Spiral project [14] for FFT. The Mel Filter Bank (Equation 7 & 8) 

step collects results from the FFT step and produces 24 Mel 

channels per frame. This is an instance of the histogram generation 

problem. Our implementation utilizes the 2 dimension parallel 

algorithm to shared memory for a fast implementation of this step. 

4.4 VTLN Optimizations 
For VTLN (Equation 14) we implement the feature extraction steps 

in two kernels. The first kernel aggregates all steps up to FFT, and 

the second kernel starts from Mel Filter Bank and completes on 

final MFCC output. This implementation allows two usage 

scenarios: when we are calibrating for the VTLN parameter for a 

speaker, we execute the first kernel once and the second kernel 

multiple times to compute the MFCC features derived from the 

intermediate FFT results; when we have determined the VTLN 

parameter to use, we can execute the first kernel once, and the 

second kernel once for best performance. Time consumption is 

reduced from (T1 + T2) * K to T1 + T2 * K. 

4.5 CUDA Reduction 
As one of the fundamental optimizations of GPU parallel 

computing, CUDA reduction is a tree-based approach using one or 

multiple thread blocks to process data in parallel at O(log(n)). Base 

on the different CUDA reduction approaches [16], we evaluate for 

each step in MFCC feature extraction and choice the proper one to 

achieve the best performance: 

• Interleaved Addressing: Divergent Branches / Bank Conflicts 

• Sequential Addressing 

• First Add During Load 

• Unroll the Last Warp 

• Completely Unrolled 

• Multiple Adds/Thread Element Per Thread 

4.5 Other Basic Optimizations 

Filter bank computation algorithm is different from all other steps, 

because the index of filter bank array is also a function lc(i) of the 

index as shown in Equation 7 & 8 and Figure 5. The index of lc(i) 

is in the range of FFT lopass and hipass cut-off, which means 

different indexes may lead to the same lc(i) for filter bank. So if it 

is parallelized at filter bank level, race condition can cause problem 

for the computation because different i:Index gives the same lc(i) 

value which is used for fb(lo(i)), for example, lc(150) = lc(160) = 

20 makes fb(20) re-entry twice when i:Index is equal to 150 and 

160 as shown in Figure 4. 

 
Figure 4: Filter Bank Inner Dimension Calculation 

The atomic operation can be used to prevent above race 

condition, but it will be serialized by GPU which is quite costly. So 

in order to not only prevent race condition but also not bring in 

additional delay, we design a 2 dimension parallel algorithm. The 

idea is to use the 2 dimension computation of which the inner 

dimension is the filter bank lower channel lo(i) calculation for 

different i:Index as illustrated in Figure 4; and the outer dimension 

is in charge of the normal filter bank calculation by passing 

through all fb(lo(i)) which have the same lo(i) but different i:Index 

as illustrated in Figure 5. Both dimensions can run in parallel using 

CUDA based reduction and the loop count is defined based on the 

filter bank lower channel lo(i) output value. 

 
Figure 5: Filter Bank Lower Channel Overview &  

Filter Bank Outer Dimension Calculation 

 

5. EXPERIMENTAL EVALUATION 
We evaluated the effectiveness of our proposed GPU by first 

comparing the time required to perform one frame of feature 

extraction to a single thread CPU implementation. The speech 

corpora used in this evaluation consisted of 28378 utterances 

totaling 58.4 hours of speech. 

5.1 Experimental Setup 
For evaluation we used an 3.40GHz Intel Core i7-2600 CPU as the 

host platform, and an NVIDIA Geforce GTX580 GPU as an 

accelerator card. The GTX580 is based on the Fermi architecture 

with 16 cores and 32 lanes per core. There is 64 KB of fast shared 

memory of which 48 KB can be used as a software scratch pad. For 

compilation, we used gcc version 4.3.4 and CUDA NVCC 4.1 

targeting GPU Compute Capability 2.0. The operating system used 

was openSUSE 12.1 (x86_64) with Linux Kernel-3.1.9. 
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Table1: Average time required per frame for 3 major steps 

5.2  Analysis of Feature Extraction 
We analyze the execution times of various steps in MFCC feature 

extraction in three groups: Pre-processing, FFT, and Feature 

Computation. The execution times to calculate a frame of features 

on the CPU and the GPU are compared in Table 1 in units of µs. 

 

      
Figure 6: Percentage of time spent on each processing stage 

The CPU reference implementation is adapted from Julius 4.2.1 

[15]. Our GPU implementation executes 97x faster than the 

reference CPU version. The preprocessing group produced the 

most speedup, as the computation there is highly regular and maps 

well to the GPU. The FFT is a version provided by the CMU Spiral 

group which produces over 100x speedup compared to the 

reference implementation. The group of feature computation steps 

has limited parallelization opportunities and requires significant 

amount of synchronization in executing a histogram-like function. 

It achieved 58x speedup compared to the reference implementation. 

For MFCC feature extraction, FFT is the dominating step in 

terms of execution time. Figure 6 show that FFT consumes 72.67% 

and 68.5% of the feature extraction time for the CPU and GPU 

implementations respectively. 

To compute multiple VTLN (Equation 14), all three groups of 

steps in the reference implementation must be repeatedly executed. 

On the GPU, only the Feature Computation steps must be 

repeatedly executed. The execution times to calculate a frame of 

features on the CPU and the GPU are compared in Table 2 in units 

of µs. 

The 2000+ relative speedup is achieved by using a less-

redundant approach in the feature extraction algorithm on the GPU. 

It is achieved by reusing the result of the FFT to compute the 

various versions of MFCC features for different VTLN parameters. 

The Feature Computation step must be repeated and thus has 

retained the 50x relative speedup. 

For multiple VTLN feature extraction, FFT is no longer the 

dominating step on the GPU in terms of execution time. As shown 

in Figure 7, only 11.58% of the total extraction time is spent in 

FFT on GPU. The majority of the computation time has shifted to 

the Feature Computation step. 

Table2: Average time required per-frame for extracting 

MFCCs for 21 VTLN factors (0.80 – 1.20 with step size of 0.02) 

 

 
Figure 7: Extraction of MFCCs for 21 VTLN parameters 

5.3 Analysis of VTLN Parameter Extraction 
Table 3 illustrates the performance of the various implementations 

we discussed in units of percentage real time factor. One 

percentage real time factor means that one can extract the features 

for 100 seconds of audio in 1 second. On a GTX580, we can 

extract MFCC features with one VTLN parameter (Equation 14) 

for 2.17 hours of audio in one second. Alternatively, we can extract 

21 sets of MFCC features from 23 minutes of audio in one second. 

Table 3: Real-time Factor Percentage Table 

 

6. CONCLUSION 
In this paper, we optimized the GPU-based implementation of 

MFCC feature extraction by introducing the 2 dimension parallel 

algorithm and custimized CUDA reductions. Using a single Nvidia 

GTX580 GPU we demonstrated that our proposal approach is 97x 

faster than a sequential CPU implementation, enabling feature 

extraction to be performed at under 0.01% of real-time enabling us 

to extract MFCC features two hours of audio in 1 second. This is 

significantly faster than prior reported results implemented on 

GPUs, DSPs and FPGAs. Furthermore, we demonstrated that 

multiple MFCC features can be generated for sets of predefined 

VTLN alpha parameters with only a small degradation in 

throughput. Using the approach described in this paper MFCC 

features were extracted in 0.07% real-time for 21 VTLN 

parameters enabling features for all 21 VTLN parameters to be 

extracted on 2 hours of audio in about 5 seconds. 

 

 
CPU (µµµµs) GPU (µµµµs) 

Relative 

Speedup 

Preprocessing 14.36 0.088 145x 

FFT 89.55 0.870 103x 

Feat. Comp. 19.32 0.312 58x 

TOTAL 123.23 1.270 97x 

     CPU (µµµµs) GPU (µµµµs) 
Relative 

Speedup 

Preprocessing 301.51 0.088 3426x 

FFT 1880.63 0.870 2161x 

Feat. Comp. 405.80 6.552 61x 

TOTAL 2587.94 7.51 344x 

RTF% 1 11 21 

CPU (Baseline) 0.8000% 8.8000% 16.8000% 

580 (Baseline) 0.0128% 0.1408% 0.2688% 

580 (Multi-VTLN) 0.0128% 0.0413% 0.0729% 
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