
OPTIMIZED MFCC FEATURE EXTRACTION ON GPU
Haofeng Kou, Weijia Shang, Ian Lane, Jike Chong

Santa Clara University Carnegie Mellon University

ABSTRACT
In this paper, we update our previous research for Mel-Frequency

Cepstral Coefficient (MFCC) feature extraction [1] and describe

the optimizations required for improving throughput on the

Graphics Processing Units (GPU). We not only demonstrate that

the feature extraction process is suitable for GPUs and a substantial

reduction in computation time can be obtained by performing

feature extraction on these platforms, but also discus about the

optimized algorithm. Using one GTX580 GPU our approach is

shown to be approximately 97x faster than a sequential CPU

implementation, enabling feature extraction to be performed at

under 0.01% real-time. This is significantly faster than prior

reported results implemented on GPUs, DSPs and FPGAs.

Furthermore we demonstrate that multiple MFCC features can be

generated for a set of predefined Vocal Tract Length Normalization

(VTLN) alpha parameters with little degradation in throughput,

along with the optimization for filter bank and reductions.

Index Terms-- Continuous Speech Recognition, MFCC Feature

Extraction, Graphics Processing Units, CUDA

1. INTRODUCTION
There have been a number of efforts over the past decades to

improve the throughput of MFCC feature extraction. As highly

optimized approaches already exist for the CPU [2], research has

typically investigated optimizing acoustic feature extraction on a

number of specific hardware platforms, including FPGAs [3,4],

DSPs [5] and GPUs [6,7,8].The feature extraction approaches

typically used in speech recognition are highly parallelizable.

FPGA based acoustic feature extraction has been investigated in

prior works, including [3,4]. These approaches all performed

significant faster than a CPU implementation and in [4] a 150x

relative speedup compared to a CPU/Matlab baseline was obtained.

Using this approach MFCC feature extraction was performed at

0.09% real-time. In addition to FPGAs, Digital Signal Processor

(DSP) platforms are also well suited for acoustic feature extraction.

In [5], real-time MFCC feature extraction was implemented using

TMS320C6713 floating point Digital Signal Processor for a simple

Support-Vector-Machine SVM-based digit recognition task.

Due to the highly parallel structure GPUs are also well suited for

acoustic feature extractions. In comparison to FPGAs and DSPs,

GPUs are also much more flexible, a GPU can be used for a variety

of tasks, including speech recognition decoding [9] speaker

classification [10], and acoustic model [11] and neural-network [12]

training. Modern GPU architectures, such as Compute Unified

Device Architecture (CUDA) [13], also allow multiple processes to

be run synchronously on a single GPU processor. This makes

GPUs an ideal platform for high-throughput acoustic feature

extraction, as it offers both highly parallel hardware architecture to

maximize computational throughput along with the flexibility to

perform and switch between complex computational tasks,

including speech recognition decoding, and acoustic model training

which are difficult to implement on FPGA or DSP platforms. The

availability of general-purpose programmable GPU and data

parallel programming models [14] has opened up new

opportunities for parsing feature extraction at orders of magnitude

faster than before. This is further empowered by new algorithms

and implementation techniques that focus on parallel scalability

[15], which expose the fine-grained concurrency in computation

intensive applications and exploits the concurrency on highly

parallel many core microprocessors.

A number of prior works [6,7,8] have investigated MFCC

feature extraction on GPU platforms. In [6], a speedup of 7x-16x

over a CPU implementation was obtained; and in [7], Talakoub and

Yi proposed a CUDA-based implementation, which obtained a

5.8x speedup compared to the CPU. They blamed the relatively

low throughput obtained on the GPU to open issues with their FFT

optimization, and limited optimizations performed within their

CUDA implementation, which they have yet to resolve. In [8],

Zhang et. al. implemented MFCC feature extraction using CUDA

on the Nvidia Fermi architecture. Although all the above

approaches obtained significant improvement compared to the

CPU, in most cases they used poorly optimized CPU baseline for

comparison. For example, in [8], the CPU baseline was

approximately 350x slower than the implementation we used in

this paper, so even it announces about 348x ratio(����/	����) [8],

the real speedup is much less than our implementation.

Following up our previous paper [1], we optimize the algorithm

by developing a more effective implementation for feature

extraction to best leverage the available memory resources and

synchronization capabilities. As we know that the computational

cost of MFCC extraction takes relatively small portion of entire

speech recognition, through our research, we expect to open the

opportunity to use GPU for the whole speech recognition.

2. MFCC FEATURE EXTRACTION
MFCC acoustic features are commonly used for feature extraction

in modern speech recognition. In this process, the input is the

waveform raw date which is divided into frames, of each frame

represents 25ms speech signal with 10ms shift between two

continuous frames. The processes on parsing different frames are

independent and paralleled.

Figure 1: MFCC Feature Extraction Waveform Input

As illustrated in Figure 1 & 2, within a frame, there are 400

sampling waveform data which goes through the following steps of

MFCC feature extraction for each frame:

ZMean Frame: Remove DC offset for 400 sample data per frame �	
� � �	
�
 ∑ �	��������� 								1 �
 � ��																										1�
w(i): waveform data

FS: frame size -samples per frame

Preemphasis: Boost the energy in high frequencies to enhance the

prominence of higher formants for 400 sampling data per frame

7130978-1-4799-0356-6/13/$31.00 ©2013 IEEE ICASSP 2013

�	
� � ��	
�
 �	

 1� ∗ �� 								2 �
 � ���	
� ∗ 	1.0
 �� �								
 � 1 										2�
pec: preEmphasise coefficient

Windowing: Apply Hamming window for sampling data per frame

�	
� � �	
� ∗ $0.54
 0.46 cos $2+	

 1���
 1 ,, 		1 �
 � ��					3�	
Log Raw Energy: Compute frame energies LE � log		2 �3	4��																												56789 																											(4)

Fourier Transform: Extract spectral information for discrete

frequency bands using the 400 sampled data per frame to generate

the real and imaginary parts for each sampling date �:; � <=	> ? @=
A> (5)

BC4D � E xCnD�H:IJKLM7��H9
78N (6)

This paper use the GPU-optimized 512x512 FFT code which is

generated using the Spiral implementation described in [14]

Figure 2: MFCC Feature Extraction Steps

Mel Filter Bank: Apply a Mel-scale filter bank and compute

energies in each frequency band. The input contains real and

imaginary part of 400 float point data generated by FFT and

converts these 800 float point data into 24 filter bank data: O�P	Q� � 1127ln	1 ? STNN� (7)

 Step 1: U	
� � VW�	

 1�3 ?
O	

 1�3 (8.1)

 Step 2: 								QX	
, P 	
�� � � QX	P 	
�� ? P�	
� ∗ U	
�				P 	
� Z FNQX	P 	
�� ? U	
�
 P�	
� ∗ U	
�				0] P 	
�] �^ 																																										LO �
 � ` (8.2)

Step 3: QX	
� � �P<a		QX	
��							QX	
� Z 1.0P<a		1�								QX	
�] 1.0	 	 (8.3)

fb(i)/lw(i/lc(i)):: filter bank data & channel weights/index

a(i): squart root of filter bank vector

re(i)/im(i): real/imaginary part of filter bank FFT channel

FN: filter bank number

LO/HI: FFT indices of lopass/hipass cut-off

Compute Cepstral Coefficients: Include the following 3 steps:

 Calculate 0'th cepstral coefficient

C0 � c 3�d	e∑ 	fbCiD5i789 j (9)

 Apply DCT to filter bank to make MFCC

OQ 	
� � c 3�dE fb	j� ∗ cos li m�d nj
 93op5i
:89

0 �
 � qr
 1 (10)

MD: MFCC dim

 Weight/Re-scale cepstral coefficients mfcc	i� � t1 ? LT2 ∗ sin		i ? 1� ∗ πLT�w ∗ mfcc	i� 0 �
 � qr
 1																																				 (11)

LT: cepstral liftering coefficient

Compute Delta & Acceleration Coefficients x�PyU	y� � zS��	{|9�HzS���	{H9�3 (12) U 	y� � }~�{�	{|9�H}~�{�	{H9�3 (13)

delta(t)/acc(t): delta/ acceleration coefficient

Energy, delta and acceleration features are appended to the cepstral

features, resulting in a multi-dimension MFCC feature per frame.

In the experimental evaluation performed in this paper a 39

dimension MFCC is generated.

VTLN: Widely used to improve the accuracy of speech

recognition systems by reducing the spectral mismatch caused by

variations in vocal tract lengths between speakers. In our

implementation VTLN is applied as a piece-wise warping of the

spectrum when applying the Mel-Filter Bank. A VTLN parameter

of α performs a warping of:

QU
 � �UQ																																																		0 � Q � Q� 		
UQ� ?	$��I H�S���I HS� , 	Q
 Q��, 							Q�] Q � S�3 (14)

3. GPU SOFTWARE COMPUTING MODEL
CUDA is the hardware and software architecture that enables

NVIDIA GPUs to execute programs written with C and other

languages. As illustrated in Figure 3, CUDA program calls parallel

kernels which executes in parallel across a set of parallel threads.

The programmer or compiler organizes these threads in thread

blocks and grids of thread blocks. The GPU instantiates a kernel

program on a grid of parallel thread blocks. Each thread within a

thread block executes an instance of the kernel, and has a thread ID

within its thread block, program counter, registers, per-thread

private memory, inputs, and output results.

Figure 3: GPU Architecture & Software Computing Model
A thread block is a set of concurrently executing threads that can

cooperate among themselves through barrier synchronization and

shared memory. A thread block has a block ID within its grid. A

grid is an array of thread blocks that execute the same kernel, read

inputs from global memory, write results to global memory, and

synchronize between dependent kernel calls. In the CUDA parallel

programming model, each thread has a per-thread private memory

space used for register spills, function calls, and C automatic array

variables. Each thread block has a per-Block shared memory space

used for inter-thread communication, data sharing, and result

sharing in parallel algorithms. Grids of thread blocks share results

in Global Memory space after kernel-wide global synchronization.

4. GPU MFCC FEATURE EXTRACTION
Feature extraction is a highly data-parallel operation. Concurrency

exists within the processing of both individual frame and across

multiple frames. Efficient implementation on a highly parallel GPU

involves mapping these levels of concurrency onto available

hardware resources while managing data working sets and

ZMean Preemphasis Windowing
Log Raw
Energy

DFT/FFT
Mel Filter

Bank

Cepstral
Coefficient

Delta, Double-
Delta

7131

synchronization requirements. Figure 3 illustrates the software

computing model for MFCC feature extraction on GPU.

4.1 Task Considerations
In our implementation, concurrency within an individual frame is

mapped to a thread block, and concurrency across different frames

is mapped to different thread blocks.

There exist significant interactions between parallel threads in

computing the Log Raw Energy (Equation 4), the FFT (Equation 5

& 6), the Mel Filter Bank (Equation 7 & 8) and the Cepstral

Coefficient (Equation 9, 10 & 11). Mapping an individual frame to

a thread block allows the efficient interactions between threads to

take place. The only data structure that is shared between

computations across different frames is the original raw waveform.

Since the data structure is read-only, there is little synchronization

necessary until the final calculation of the Delta and Double Delta

components of the final output.

4.2 Data Considerations
Feature extraction involves a series of computationally inexpensive

steps such as Preemphasis (Equation 2), Windowing and Log Raw

Energy calculations (Equation 3 & 4). Many of these steps can be

easily parallelized. Given the limited availability of the fast shared

(scratch pad) memory on a GPU, the data working set must be

carefully managed. To do this we buffer the intermediate results in

temporary data structures that fit into the shared (scratch pad)

memory on the GPU, thus significantly reducing the need to wait

for long latency off-chip memory accesses.

4.3 Synchronization Considerations
In the Mel Filter Bank (Equation 7 & 8) and FFT (Equation 5 & 6)

step, significant synchronization challenges exist for a highly

parallel implementation. We chose to leverage work from the

Spiral project [14] for FFT. The Mel Filter Bank (Equation 7 & 8)

step collects results from the FFT step and produces 24 Mel

channels per frame. This is an instance of the histogram generation

problem. Our implementation utilizes the 2 dimension parallel

algorithm to shared memory for a fast implementation of this step.

4.4 VTLN Optimizations
For VTLN (Equation 14) we implement the feature extraction steps

in two kernels. The first kernel aggregates all steps up to FFT, and

the second kernel starts from Mel Filter Bank and completes on

final MFCC output. This implementation allows two usage

scenarios: when we are calibrating for the VTLN parameter for a

speaker, we execute the first kernel once and the second kernel

multiple times to compute the MFCC features derived from the

intermediate FFT results; when we have determined the VTLN

parameter to use, we can execute the first kernel once, and the

second kernel once for best performance. Time consumption is

reduced from (T1 + T2) * K to T1 + T2 * K.

4.5 CUDA Reduction
As one of the fundamental optimizations of GPU parallel

computing, CUDA reduction is a tree-based approach using one or

multiple thread blocks to process data in parallel at O(log(n)). Base

on the different CUDA reduction approaches [16], we evaluate for

each step in MFCC feature extraction and choice the proper one to

achieve the best performance:

• Interleaved Addressing: Divergent Branches / Bank Conflicts

• Sequential Addressing

• First Add During Load

• Unroll the Last Warp

• Completely Unrolled

• Multiple Adds/Thread Element Per Thread

4.5 Other Basic Optimizations

Filter bank computation algorithm is different from all other steps,

because the index of filter bank array is also a function lc(i) of the

index as shown in Equation 7 & 8 and Figure 5. The index of lc(i)

is in the range of FFT lopass and hipass cut-off, which means

different indexes may lead to the same lc(i) for filter bank. So if it

is parallelized at filter bank level, race condition can cause problem

for the computation because different i:Index gives the same lc(i)

value which is used for fb(lo(i)), for example, lc(150) = lc(160) =

20 makes fb(20) re-entry twice when i:Index is equal to 150 and

160 as shown in Figure 4.

Figure 4: Filter Bank Inner Dimension Calculation

The atomic operation can be used to prevent above race

condition, but it will be serialized by GPU which is quite costly. So

in order to not only prevent race condition but also not bring in

additional delay, we design a 2 dimension parallel algorithm. The

idea is to use the 2 dimension computation of which the inner

dimension is the filter bank lower channel lo(i) calculation for

different i:Index as illustrated in Figure 4; and the outer dimension

is in charge of the normal filter bank calculation by passing

through all fb(lo(i)) which have the same lo(i) but different i:Index

as illustrated in Figure 5. Both dimensions can run in parallel using

CUDA based reduction and the loop count is defined based on the

filter bank lower channel lo(i) output value.

Figure 5: Filter Bank Lower Channel Overview &

Filter Bank Outer Dimension Calculation

5. EXPERIMENTAL EVALUATION
We evaluated the effectiveness of our proposed GPU by first

comparing the time required to perform one frame of feature

extraction to a single thread CPU implementation. The speech

corpora used in this evaluation consisted of 28378 utterances

totaling 58.4 hours of speech.

5.1 Experimental Setup
For evaluation we used an 3.40GHz Intel Core i7-2600 CPU as the

host platform, and an NVIDIA Geforce GTX580 GPU as an

accelerator card. The GTX580 is based on the Fermi architecture

with 16 cores and 32 lanes per core. There is 64 KB of fast shared

memory of which 48 KB can be used as a software scratch pad. For

compilation, we used gcc version 4.3.4 and CUDA NVCC 4.1

targeting GPU Compute Capability 2.0. The operating system used

was openSUSE 12.1 (x86_64) with Linux Kernel-3.1.9.

7132

Table1: Average time required per frame for 3 major steps

5.2 Analysis of Feature Extraction
We analyze the execution times of various steps in MFCC feature

extraction in three groups: Pre-processing, FFT, and Feature

Computation. The execution times to calculate a frame of features

on the CPU and the GPU are compared in Table 1 in units of µs.

Figure 6: Percentage of time spent on each processing stage

The CPU reference implementation is adapted from Julius 4.2.1

[15]. Our GPU implementation executes 97x faster than the

reference CPU version. The preprocessing group produced the

most speedup, as the computation there is highly regular and maps

well to the GPU. The FFT is a version provided by the CMU Spiral

group which produces over 100x speedup compared to the

reference implementation. The group of feature computation steps

has limited parallelization opportunities and requires significant

amount of synchronization in executing a histogram-like function.

It achieved 58x speedup compared to the reference implementation.

For MFCC feature extraction, FFT is the dominating step in

terms of execution time. Figure 6 show that FFT consumes 72.67%

and 68.5% of the feature extraction time for the CPU and GPU

implementations respectively.

To compute multiple VTLN (Equation 14), all three groups of

steps in the reference implementation must be repeatedly executed.

On the GPU, only the Feature Computation steps must be

repeatedly executed. The execution times to calculate a frame of

features on the CPU and the GPU are compared in Table 2 in units

of µs.

The 2000+ relative speedup is achieved by using a less-

redundant approach in the feature extraction algorithm on the GPU.

It is achieved by reusing the result of the FFT to compute the

various versions of MFCC features for different VTLN parameters.

The Feature Computation step must be repeated and thus has

retained the 50x relative speedup.

For multiple VTLN feature extraction, FFT is no longer the

dominating step on the GPU in terms of execution time. As shown

in Figure 7, only 11.58% of the total extraction time is spent in

FFT on GPU. The majority of the computation time has shifted to

the Feature Computation step.

Table2: Average time required per-frame for extracting

MFCCs for 21 VTLN factors (0.80 – 1.20 with step size of 0.02)

Figure 7: Extraction of MFCCs for 21 VTLN parameters

5.3 Analysis of VTLN Parameter Extraction
Table 3 illustrates the performance of the various implementations

we discussed in units of percentage real time factor. One

percentage real time factor means that one can extract the features

for 100 seconds of audio in 1 second. On a GTX580, we can

extract MFCC features with one VTLN parameter (Equation 14)

for 2.17 hours of audio in one second. Alternatively, we can extract

21 sets of MFCC features from 23 minutes of audio in one second.

Table 3: Real-time Factor Percentage Table

6. CONCLUSION
In this paper, we optimized the GPU-based implementation of

MFCC feature extraction by introducing the 2 dimension parallel

algorithm and custimized CUDA reductions. Using a single Nvidia

GTX580 GPU we demonstrated that our proposal approach is 97x

faster than a sequential CPU implementation, enabling feature

extraction to be performed at under 0.01% of real-time enabling us

to extract MFCC features two hours of audio in 1 second. This is

significantly faster than prior reported results implemented on

GPUs, DSPs and FPGAs. Furthermore, we demonstrated that

multiple MFCC features can be generated for sets of predefined

VTLN alpha parameters with only a small degradation in

throughput. Using the approach described in this paper MFCC

features were extracted in 0.07% real-time for 21 VTLN

parameters enabling features for all 21 VTLN parameters to be

extracted on 2 hours of audio in about 5 seconds.

CPU (µµµµs) GPU (µµµµs)

Relative

Speedup

Preprocessing 14.36 0.088 145x

FFT 89.55 0.870 103x

Feat. Comp. 19.32 0.312 58x

TOTAL 123.23 1.270 97x

 CPU (µµµµs) GPU (µµµµs)
Relative

Speedup

Preprocessing 301.51 0.088 3426x

FFT 1880.63 0.870 2161x

Feat. Comp. 405.80 6.552 61x

TOTAL 2587.94 7.51 344x

RTF% 1 11 21

CPU (Baseline) 0.8000% 8.8000% 16.8000%

580 (Baseline) 0.0128% 0.1408% 0.2688%

580 (Multi-VTLN) 0.0128% 0.0413% 0.0729%

7133

7. REFERENCES
[1] H.Kou, W.Shang, I.Lane, J.Chong “Efficient MFCC Feature

Extraction on Graphics Processing Units” CIWSP` 2013.

[2] M.J. Hunt, “Spectral signal processing for ASR” Proceedings of

ASRU, Keystone, Colorado (1999)

[3] R. Hoare, J. Schuster, K. Gupta, “Speech Silicon: A data-driven SoC

for Performing Hidden Markov Model based Speech Recognition,”.

Proc. HPEC 2005, Lincoln Labs, MIT, Boston, MA.

[4] Erik M. Schmidt, Kris West, Youngmoo E. Kim, “Efficient Acoustic

Feature Extraction For Music Information Retrieval Using

Programmable Gate Arrays” in 10th International Society for Music

Information Retrieval Conference, ISMIR 2009

[5] J. Manikandan, B. Venkataramani, K. Girish, H. Karthic, V.

Siddharth, “Hardware Implementation of Real-Time Speech

Recognition System Using TMS320C6713 DSP” in VLSI Design

(VLSI Design), 24th International Conference, 2011

[6] D. Bremer, J. Johnson, H. Jones, Y. Liu, D. May, J. Meredith, and S.

Veydia, “Application Kernels on Graphics Processing Units,”in

Workshop on HPEC, 2005.

[7] O. Talakoub and A. Yi, “Implementing a Speech Recognition

System on a GPU using CUDA”, Class report for ECE1742S:

Programming Massively Parallel Multiprocessors using CUDA,

University of Toronto, retrieved online on 4/2/2010.

[8] L. Zheng,S. Buthpitiya, I. Lane, and J. Chong, “Highly Parallel

Computing for Real-Time Large Vocabulary Speech Recognition

and Training”, LTI Technical Report, Fall 2010

[9] K. You, J. Chong, Y. Yi, E. Gonina, C. Hughes, Y.-K. Chen, W.

Sung, and K. Keutzer, “Parallel scalability in speech recognition,”

IEEE Signal Processing Magazine, vol. 26, no. 6, 2009.

[10] G. Friedland, J. Chong, and A. Janin, “Parallelizing speaker-

attributed speech recognition for meeting browsing,” in Proc. IEEE

International Symposium on Multimedia, Taichung, Taiwan,

December 2010.

[11] S. Buthpitiya, I. Lane and J. Chong, “A Parallel Implementation of

Viterbi Training for Acoustic Models using Graphics Processing

Units”, InPAR, 2012

[12] S. Scanzio, S. Cumani, R. Gemello, F. Mana, and P. Laface,

“Parallel implementation of artificial neural network training for

speech recognition,” Pattern Recognition Letters 31: 1302–1309,

2010

[13] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable parallel

programming with CUDA,” Queue,vol. 6, pp. 40–53, March2008.

http://doi.acm.org/10.1145/1365490.1365500

[14] Franchetti, F., Puschel, M., Voronenko, Y., Chellappa, S., Moura,

J.M.F., “Discrete Fourier Transform on Multicore” in Signal

Processing Magazine, IEEE , 2009

[15] A. Lee and T. Kawahara, “Recent development of open-source

speech recognition engine Julius,” In Proceedings of the 1st Asia-

Pacific Signal and Information Processing Association Annual

Summit

[16] M. Harris, “Optimizing Parallel Reduction in CUDA” Nvidia

developer Technology

7134

