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ABSTRACT

This paper proposes a novel automatic speech recognition (ASR)
front-end that unites the principles of bidirectional Long Short-Term
Memory (BLSTM), Connectionist Temporal Classification (CTC),
and Bottleneck (BN) feature generation. BLSTM networks are known
to produce better probabilistic ASR features than conventional multi-
layer perceptrons since they are able to exploit a self-learned amount
of temporal context for phoneme estimation. Combining BLSTM
networks with a CTC output layer implies the advantage that the
network can be trained on unsegmented data so that the quality of
phoneme prediction does not rely on potentially error-prone forced
alignment segmentations of the training set. In challenging ASR sce-
narios involving highly spontaneous, disfluent, and noisy speech, our
BN-CTC front-end leads to remarkable word accuracy improvements
and prevails over a series of previously introduced BLSTM-based
ASR systems.

Index Terms— Automatic Speech Recognition, Connectionist
Temporal Classification, Tandem Features, Long Short-Term Memory

1. INTRODUCTION

Aiming to improve the robustness of automatic speech recognition
(ASR) systems, more and more researchers are focusing on so-called
tandem ASR front-ends in which neural networks are applied to pro-
duce probabilistic features serving as input for Hidden Markov Mod-
els (HMMs). In most cases, these neural networks are feed-forward
multilayer perceptrons (MLP), meaning that they are composed of
multiple hidden layers. MLPs used within tandem front-ends are
usually trained to map form MFCC or PLP features to framewise
phoneme or phoneme state labels so that the output activations of the
trained network can be used as speech features, after being logarith-
mized and decorrelated. Such probabilistic features typically lead
to better speech recognition performance than conventional cepstral
features [1-3].

Alternatively to MLP output activations, also activations within
a hidden layer of the network were shown to be suited as speech
features. Using hidden layer activations of an MLP-based phoneme
predictor as HMM input has the advantage that by choosing the
size of the corresponding hidden layer, the dimensionality of the
probabilistic feature vector can be defined, so that subsequent dimen-
sionality reduction may be omitted. Compared to the other hidden
layers, the hidden layer whose activations are used as features tends
to be small, so that these features are usually referred to as ‘bottle-
neck’ (BN) features [4-6]. Bottleneck features are known to increase
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word accuracies, especially for extremely difficult ASR tasks such as
recognizing noisy, conversational speech containing non-linguistic
vocalizations, disfluencies, and emotional coloring [4,7-9].

Recently, it was shown that in order to capture co-articulation
effects and higher level context in human speech, the application of
bidirectional Long Short-Term Memory (BLSTM) networks [10-12]
leads to better results than simple feature frame stacking as it is usu-
ally done within MLP front-ends [13]. By replacing the hidden neu-
rons with so-called ‘memory blocks’, BLSTM networks are able to
learn the amount of temporal context that has to be considered for the
respective sequence labeling task and can model context over longer
time spans than standard recurrent neural networks (RNNs). First
promising results in phoneme-based keyword spotting via BLSTM
networks [14] motivated further research in the areas of continuous
ASR [15], noise robust speech recognition [16], language model-
ing [17], and Bottleneck-BLSTM front-ends [18].

Since the networks within probabilistic front-ends need to be
trained on framewise targets, a forced alignment of the transcriptions
in the training set has to be done prior to neural network training in
order to determine the segment boundaries. Hence, potential errors in
the forced alignment limit the quality of the phoneme predictor that
is to be trained. In [19], a solution to this problem is proposed: If
the networks are equipped with a so-called Connectionist Temporal
Classification (CTC) output layer, the segment boundaries do not have
to be known during training as the network is allowed to choose the
location of each label. This technique has led to excellent results in
phoneme recognition [19], handwriting recognition [20], and keyword
spotting [21].

The aim of this paper is to combine the CTC idea with the
Bottleneck-BLSTM front-end we proposed in [18], so that the re-
sulting ASR feature extractor profits from contextual knowledge by
BLSTM modeling, robust feature generation via bottleneck networks,
and flexible phoneme boundary modeling via CTC. To enable a com-
parison between the proposed CTC features and earlier attempts to
exploit BLSTM for continuous ASR, we conduct experiments on
the ‘COnversational Speech In Noisy Environments’ (COSINE) cor-
pus [22] and on the Buckeye corpus [23]. Both databases contain
instationary noise sources as well as spontaneous and colloquial
speaking styles that typically lead to high error rates.

The structure of this paper is as follows: First, we review the
principle of Connectionist Temporal Classification in Section 2. Next,
we describe the concept of Bottleneck-BLSTM networks in Section 3
and our method of CTC feature extraction in Section 4. Experiments
are shown in Section 5 before we draw conclusions in Section 6 and
provide references to related work in Section 7.
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2. CONNECTIONIST TEMPORAL CLASSIFICATION

A major problem with the standard objective functions for RNNs is
that they require individual targets for each point in the data sequence,
which in turn requires the boundaries between segments with different
labels (e. g., the phoneme boundaries in speech) to be pre-determined.
The Connectionist Temporal Classification output layer [19] solves
this problem by allowing the network to choose the location as well
as the class of each label. By summing up over all sets of label
locations that yield the same label sequence, CTC determines a prob-
ability distribution over possible labelings, conditioned on the input
sequence.

A CTC layer has as many output units as there are distinct labels
for a task, plus an extra blank unit for no label. The activations
of the outputs at each timestep are normalized and interpreted as
the probability of observing the corresponding label (or no label)
at that point in the sequence. These probabilities are conditionally
independent given the input sequence. Thus, with 1.7 being a length
T feature vector input sequence and o] representing the activation of
output unit ¢ at time ¢, the total probability of a given (framewise)
sequence z1.7 of blanks and labels is

T
p(z1.r|T1:m) = HO?. (D
t=1

In order to sum over all the output sequences corresponding to a
particular labeling (regardless of the location of the labels) we define
an operator 53(-) that removes first the repeated labels and then the
blanks from the output sequence, so that, e. g., B(AA — —BBB —
B) = ABB. The total probability of the resulting length V" labeling
l1.v, where V < T, then is

p(luvlenr) = >

217 B(z1.7)=l1v

p(z1.7|T1.T)- )

A naive calculation of Equation (2) is unfeasible, because the number
of z1.7 terms corresponding to each labeling increases exponentially
with the sequence length. However, p(l1.v|z1.7) can be efficiently
calculated with a dynamic programming algorithm similar to the
forward-backward algorithm for HMMs (see [19]).

An RNN with a CTC output layer can be trained with gradient
descent by backpropagating through time the partial derivatives of
the objective function with respect to the output activations. When a
new input sequence is presented to a network trained with CTC, the
output activations (corresponding to the label probabilities) tend to
form single frame spikes separated by long intervals where the blank
label is emitted. The location of the spikes corresponds to the portion
of the input sequence where the label is detected.

3. BOTTLENECK-BLSTM NETWORKS

In tandem ASR systems, the output activations of neural networks
trained on framewise phoneme or phoneme state targets are used
as probabilistic features, alternatively to (or in combination with)
standard MFCC features. For enhanced probabilistic feature gener-
ation, standard multilayer perceptrons (MLPs) can be replaced by
bidirectional LSTM networks [12] which allow to access and model
long-range temporal context information via so-called memory blocks
substituting the conventional neurons in the network’s hidden lay-
ers. Generally, bidirectional networks consist of two sets of hidden
layers, one for forward and one for backward processing. This en-
ables the incorporation of past and future context and captures for
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Fig. 1: Architecture of the Bottleneck-BLSTM front-end.

example co-articulation effects in human speech (for more details,
see [12]). In [24], an ASR front-end using logarithmized BLSTM
output activations in combination with MFCC features was proposed.

Combining BLSTM based feature generation with the ‘bottle-
neck’ idea proposed in [4] was shown to lead to lower error rates
in spontaneous speech recognition [18]. The bottleneck principle
allows to generate tandem feature vectors of arbitrary size by using
the activations of a narrow hidden (bottleneck) layer as features —
rather than the logarithmized output activations corresponding to the
estimated phoneme or phoneme state posteriors.

Figure 1 illustrates the detailed structure of the Bottleneck-
BLSTM front-end considered in our experiments. Since we focus on
bidirectional processing, we have two bottleneck layers: one within
the network processing the speech sequence in forward direction and
one within the network for backward processing. The MFCC feature
vectors x; serve as input for a BN-BLSTM network that is trained on
framewise phoneme targets. During feature extraction, the activations
of the output layer are ignored; only the activations of the forward
and backward bottleneck layer are processed (i. e., the memory block
outputs of the bottleneck layers). Together with the original MFCC
features, the forward and backward bottleneck layer activations are
concatenated to one large feature vector which is then decorrelated
and dimensionality reduced by Principal Component Analysis (PCA).
In Figure 1, the connections between the bottleneck layers and the
output layer are depicted in grey, indicating that the activations of
the output layer (o¢) are only used during network training and not
during BN-BLSTM feature extraction.
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4. CTC FEATURE GENERATION

Alternatively to BLSTM features as described in Section 3, this
study considers the extraction of CTC features, i. e., features derived
from the activations of a network using the BLSTM principle in
combination with Connectionist Temporal Classification (see Section
2). This implies the advantage that the neural network applied within
the probabilistic feature extractor does not have to be trained on
framewise phoneme targets but on the unsegmented phoneme label
sequences [1.v. Hence, CTC feature extraction does not rely on
error-prone forced alignments which in turn can affect the phoneme
modeling accuracy of the neural network in a negative way if the
segments are inaccurate.

The input layer of our CTC network is of size 39, corresponding
to the 39 cepstral mean and variance normalized MFCC features
(including deltas and double deltas) that are extracted from the speech
signal every 10 ms using a window size of 25 ms. Both the forward
and the backward branch of the underlying BLSTM architecture
consist of three hidden layers with 78, 128, and 80 memory blocks,
respectively. This is equivalent to the configuration used for BLSTM
feature generation in [18]. The CTC output layer comprises 42 output
nodes which corresponds to 41 phoneme targets and one blank label
(see Section 2). During CTC network training we use a learning rate
of 10™* and a momentum of 0.9. Zero mean Gaussian noise with
standard deviation 0.6 is added to the input activations in the training
phase in order to improve generalization. Prior to training, all weights
are randomly initialized in the range from -0.1 to 0.1. In the training
phase, we evaluate the overall label error rate on a development set
after every fifth epoch. Training is aborted as soon as no improvement
on the development set can be observed during the last 50 epochs, and
the network that achieved the best label error rate on the development
set is chosen as the final network.

To gaussianize the framewise output activations o, of the trained
CTC feature extractor, we take the logarithm of each CTC output.
These logarithmized CTC outputs are then appended to the original
39-dimensional MFCC feature vector, resulting in an extended 81-
dimensional tandem feature vector. To reduce the dimensionality of
the feature vector and to decorrelate its components, PCA is applied.
The resulting features will be called ‘CTC features’ in the following.

As an alternative to these CTC features, we also consider the
bottleneck technique within our CTC feature generation framework.
Thus, similar to the BN-BLSTM feature extractor described in Section
3, we collect activations of a hidden layer within our CTC network.
Analogous to [18], we chose the third hidden layer (size 80) as
bottleneck layer. After appending the original MFCC features, we
end up with 199 feature vector components (39 MFCC features,
80 bottleneck features from the forward branch, and 80 bottleneck
features from the backward branch). Again, we apply PCA to reduce
the feature vector dimensionality. In the following, these features will
be referred to as ‘BN-CTC features’.

5. EXPERIMENTS

5.1. Databases

To enable comparisons between the proposed CTC feature extrac-
tor and previously introduced concepts for BLSTM modeling of
spontaneous speech, we use the ‘COnversational Speech In Noisy
Environments’ (COSINE) corpus [22] which has also been used
in [15], [13], and [18]. The COSINE corpus contains multi-party con-
versations recorded in real world environments. The recordings were
captured on a wearable recording system so that the speakers were
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Fig. 2: Word accuracy (WA) on the COSINE test set for different
numbers of PCA coefficients: CTC, Bottleneck-CTC, BLSTM, and
Bottleneck-BLSTM features.

able to walk around during recording. Since the participants were
asked to speak about anything they liked and to walk to various noisy
locations, the corpus consists of natural, spontaneous, and highly
disfluent speaking styles partly masked by indoor and outdoor noise
sources such as crowds, vehicles, and wind. The recordings were cap-
tured using multiple microphones simultaneously, however, to match
most application scenarios, we exclusively used speech recorded by a
close-talking microphone (Sennheiser ME-3). Details on the speech
recognition task and on the speaker-independent division into training,
development, and test partition can be found in [15] and [9].

In conformance with [18], the best system configurations are
also evaluated on the Buckeye corpus [23]. It contains recordings
of interviews with 40 subjects, who were told that they were in a
linguistic study on how people express their opinions. The corpus
was originally intended to study phonetic variation among speakers,
and has been used for a variety of phonetic studies as well as for ASR
experiments [25]. Similar to the COSINE database, the contained
speech is highly spontaneous. Further details on the corpus can be
found in [9].

5.2. Experimental Setup

In what follows, we compare the CTC and BN-CTC features proposed
in Section 4 to the (BN-)BLSTM features introduced in [18] and to
alternative approaches for BLSTM-based phoneme modeling using a
discretized BLSTM feature (see [13] and [15]). The HMM system
applied for processing our probabilistic features is identical to the
back-end used to determine the baseline HMM results in [18]: Each
phoneme is represented by three emitting states (left-to-right HMMs)
with 16 Gaussian mixtures. The initial monophone HMMs were
mapped to tied-state cross-word triphone models with shared state
transition probabilities. Two Baum-Welch iterations were performed
for re-estimation of the triphone models. Finally, the number of
mixture components of the triphone models was increased to 16
in four successive rounds of mixture doubling and re-estimation
(four iterations in every round). Both, acoustic models and a back-
off bigram language model were trained on the training set of the
COSINE corpus.
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Table 1: Word accuracies on the COSINE and Buckeye test set for
CTC, Bottleneck-CTC, and other BLSTM-based front-ends intro-
duced in [18], [13], and [15].

WA [%]
features COSINE | Buckeye
Bottleneck-CTC features 50.83 57.27
CTC features 50.22 58.46
Bottleneck-BLSTM features [18] 49.92 58.21
BLSTM features [18] 48.23 57.80
discrete BLSTM (multi-stream) [13] 48.01 56.61
discrete BLSTM [15] 45.04 55.91
MFCC 43.36 50.97

5.3. Results

For our initial experiments, we focus on the COSINE corpus and
investigate how the number of PCA coefficients used as final feature
vector affects the word accuracy (WA) on the COSINE test set. Thus,
we train and evaluate ASR systems based on feature vectors contain-
ing 35 to 45 principle components, i. €., the principal components
corresponding to the 35 to 45 largest eigenvalues. In Figure 2, the
results obtained by CTC, Bottleneck-CTC, BLSTM, and Bottleneck-
BLSTM features are shown. The BLSTM and BN-BLSTM results
are taken from [9]. When we compare CTC and BLSTM features, we
find that CTC features lead to better word accuracies than BLSTM
features with a performance gain of up to 2 % absolute. The influence
of the number of PCA coefficients on the recognition performance
is rather low for both front-ends. The best WA for CTC features
(50.22 %) is reached for a front-end using 38 principal components.
When considering bottleneck features, we see that the dependency on
the number of PCA coefficients is more pronounced: For BN-BLSTM
features, there is a clear WA maximum for 39-dimensional feature
vectors (WA of 49.92 %) while the BN-CTC front-end performs best
if 42 principal components are used, leading to the overall best WA
of 50.83 % on the COSINE test set.

Table 1 compares the best results obtained by BN-CTC and CTC
features with the word accuracies reported in [18] for (Bottleneck-)
BLSTM features. Additionally, the performance of an ASR system
processing MFCC features and a discretized maximum-likelihood
BLSTM phoneme prediction feature in a single (see [15]) or in mul-
tiple feature streams (see [13]) is shown. Starting from a simple
MFCC-HMM system as described in Section 5.2 (WA of 43.36 %),
the word accuracy on the COSINE test set can be increased to 45.04 %
and 48.01 % by modeling an additional BLSTM-based phoneme
prediction feature using a single-stream and a multi-stream HMM,
respectively. Applying tandem BLSTM and Bottleneck-BLSTM fea-
tures (see Section 3), a further performance gain can be observed,
leading to a WA of 48.23 % and 49.92 % (39 principal components,
see [18]). Best word accuracies on the COSINE corpus are reached
with the CTC and BN-CTC front-end proposed in this paper: As
shown in Figure 2, WA can be increased to up to 50.22 % and 50.83 %,
respectively, by employing Connectionist Temporal Classification
within the BLSTM network for probabilistic feature extraction. For
the COSINE experiment, we can see that since the training of the
CTC network does not require any knowledge about the phoneme
boundaries, phonemes are modeled more accurately within the front-
end, which in turn implies a better word accuracy of the overall ASR
system. Especially for challenging corpora and recognition tasks as
considered in the COSINE experiment, we can assume that sponta-

neous and disfluent speaking styles as well as background noise lead
to errors in the forced alignment transcriptions needed for BLSTM
network training. This of course limits the accuracy of the phoneme
estimates generated by the BLSTM network and thus negatively af-
fects the quality of the generated BLSTM features. The CTC principle
allows us to train our front-end on unsegmented speech and enables
the generation of enhanced probabilistic features.

Next, we train and evaluate all considered ASR systems on the
Buckeye corpus. The Buckeye corpus also contains spontaneous
speaking styles but is less noisy than the COSINE database, which
leads to a higher baseline HMM word accuracy of 50.97 %. Note that
for the Buckeye experiment, we use the same system configuration
as for the COSINE experiment, without any further optimizations,
i.e., 38 principal components are used in the CTC front-end and 42
principal components are used within the BN-CTC feature extractor.
As shown in Table 1, the word accuracy on the Buckeye test set can be
increased to up to 58.46 % when applying CTC features. Compared
to the COSINE experiment, the performance difference between
BLSTM and CTC features is less pronounced. This smaller perfor-
mance gap can be attributed to the fact that the forced alignments of
the Buckeye training set are more accurate as the utterances contain
less noise than the utterances in the COSINE corpus. Thus, we can
conclude that CTC features tend to be best suited for extremely chal-
lenging ASR scenarios that involve non-stationary interfering noise
sources and conversational speaking styles that are hard to recognize
and typically lead to erroneous forced alignments.

6. CONCLUSION

We showed how context-sensitive ASR tandem feature generation
can be enhanced via Connectionist Temporal Classification. Build-
ing on our Bottleneck-BLSTM front-end as proposed in [18], we
investigated how a CTC output layer incorporated into a BLSTM
network for phoneme prediction affects the word accuracy of the
resulting ASR system. By using CTC, we are able to train our net-
work on unsegmented data and thus do not rely on the quality of
forced alignment segmentations that would be needed if a standard
output layer was applied. We found that especially for very noisy
and spontaneous speech, CTC-based probabilistic feature extraction
prevails over comparable BLSTM features. Generally, it seems to be
advantageous to use CTC and Bottleneck-CTC features, whenever an
ASR system shall be trained on noise corrupted spontaneous speech
in order to match the conditions that are expected during testing. In
such cases, errors in the forced alignments of the training set tend
to undermine the full potential of BLSTM-based front-ends, as the
network is partly trained on incorrect framewise phoneme targets. In
future work, we will further investigate the relation between errors in
the forced alignment and BLSTM phoneme prediction quality. Fur-
thermore, we plan to combine our CTC front-end with methods for
speech enhancement such as non-negative matrix factorization [26].

7. RELATION TO PRIOR WORK

Prior work on BLSTM-based continuous speech recognition in-
cludes [15], [13], [18], and [8]. Connectionist Temporal Classifi-
cation was first introduced in [19]. First studies on speech processing
via CTC comprise keyword spotting based on whole-word mod-
els [27] and phoneme models [21]. This paper uses the experimental
framework of [18] and shows how CTC can be incorporated into
Bottleneck-BLSTM front-ends for enhanced recognition accuracies
in challenging ASR tasks.

7128



8. REFERENCES

[1] H. Hermansky, D. P. W. Ellis, and S. Sharma, “Tandem connec-
tionist feature extraction for conventional HMM systems,” in
Proc. of ICASSP, Istanbul, Turkey, 2000, pp. 1635-1638.

[2] D. P. W. Ellis, R. Singh, and S. Sivadas, “Tandem acoustic
modeling in large-vocabulary recognition,” in Proc. of ICASSP,
Salt Lake City, UT, USA, 2001, pp. 517-520.

[3] Q.Zhu, B. Chen, N. Morgan, and A. Stolcke, “Tandem connec-
tionist feature extraction for conversational speech recognition,”
in Machine Learning for Multimodal Interaction, pp. 223-231.
Springer, 2005.

[4] F. Grezl, M. Karafiat, K. Stanislav, and J. Cernocky, “Proba-
bilistic and bottle-neck features for LVCSR of meetings,” in
Proc. of ICASSP, Honolulu, Hawaii, 2007, pp. 757-760.

[5] D. Yu and M. L. Seltzer, “Improved bottleneck features us-
ing pretrained deep neural networks,” in Proc. of Interspeech,
Florence, Italy, 2011, pp. 237-240.

[6] C. Plahl, R. Schliiter, and H. Ney, “Hierarchical bottle neck
features for LVCSR,” in Proc. of Interspeech, Makuhari, Japan,
2010, pp. 1197-1200.

[7] F. Grezl and P. Fousek, “Optimizing bottle-neck features for
LVCSR,” in Proc. of ICASSP, Las Vegas, NV, 2008, pp. 4729—
4732.

[8] F. Weninger, M. Wollmer, and B. Schuller, “Combining
Bottleneck-BLSTM and Semi-Supervised Sparse NMF for
Recognition of Conversational Speech in Highly Instationary
Noise,” in Proc. of Interspeech, Portland, Oregon, USA, 2012.

[9] M. Wollmer and B. Schuller, “Probabilistic speech feature
extraction with context-sensitive bottleneck neural networks,
Neurocomputing, 2012.

1

[10] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural Computation, vol. 9, no. 8, pp. 1735-1780, 1997.

[11] E Gers, J. Schmidhuber, and F. Cummins, “Learning to forget:
Continual prediction with LSTM,” Neural Computation, vol.
12, no. 10, pp. 2451-2471, 2000.

[12] A. Graves and J. Schmidhuber, “Framewise phoneme clas-
sification with bidirectional LSTM and other neural network
architectures,” Neural Networks, vol. 18, no. 5-6, pp. 602-610,
2005.

[13] M. Wollmer, B. Schuller, and G. Rigoll, “Feature frame stacking
in RNN-based Tandem ASR systems - learned vs. predefined
context,” in Proc. of Interspeech, Florence, Italy, 2011, pp.
1233-1236.

[14] M. Wollmer, E. Eyben, J. Keshet, A. Graves, B. Schuller, and
G. Rigoll, “Robust discriminative keyword spotting for emo-
tionally colored spontaneous speech using bidirectional LSTM
networks,” in Proc. of ICASSP, Taipei, Taiwan, 2009, pp. 3949-
3952.

[15] M. Wollmer, F. Eyben, B. Schuller, and G. Rigoll, “Recog-
nition of spontaneous conversational speech using long short-
term memory phoneme predictions,” in Proc. of Interspeech,
Makuhari, Japan, 2010, pp. 1946-1949.

[16] E. Weninger, J. Geiger, M. Wollmer, B. Schuller, and G. Rigoll,
“The Munich 2011 CHiME Challenge Contribution: NMEF-
BLSTM Speech Enhancement and Recognition for Reverber-
ated Multisource Environments,” in Proc. of Machine Listening
in Multisource Environments (CHIME 201 1), satellite workshop
of Interspeech 2011, Florence, Italy, 2011, pp. 24-29.

7129

[17]

[18]

[19]

[20]

[21]

[22]

(23]

(24]

[25]

[26]

(27]

M. Sundermeyer, R. Schliiter, and H. Ney, “LSTM Neural
Networks for Language Modeling,” in Proc. of Interspeech,
Portland, Oregon, USA, 2012.

M. Wollmer, B. Schuller, and G. Rigoll, “A novel Bottleneck-
BLSTM front-end for feature-level context modeling in conver-
sational speech recognition,” in Proc. of ASRU, Waikoloa, Big
Island, Hawaii, 2011, pp. 36—41.

A. Graves, S. Fernandez, F. Gomez, and J. Schmidhuber, “Con-
nectionist temporal classification: Labelling unsegmented data
with recurrent neural networks,” in Proc. of ICML, Pittsburgh,
USA, 2006, pp. 369-376.

A. Graves, M. Liwicki, S. Fernandez, R. Bertolami, H. Bunke,
and J. Schmidhuber, “A novel connectionist system for un-
constrained handwriting recognition,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 31, no. 5, pp.
855-868, 2009.

M. Wollmer, F. Eyben, B. Schuller, and G. Rigoll, “Spoken
term detection with connectionist temporal classification - a
novel hybrid CTC-DBN decoder,” in Proc. of ICASSP, Dallas,
Texas, 2010, pp. 5274-5277.

A. Stupakov, E. Hanusa, D. Vijaywargi, D. Fox, and J. Bilmes,
“The design and collection of COSINE, a multi-microphone in
situ speech corpus recorded in noisy environments,” Computer
Speech and Language, vol. 26, no. 1, pp. 52-66, 2011.

M. A. Pitt, L. Dilley, K. Johnson, S. Kiesling, W. Raymond,
E. Hume, and E. Fosler-Lussier, Buckeye Corpus of Conver-
sational Speech (2nd release), Department of Psychology,
Ohio State University (Distributor), Columbus, OH, USA, 2007,
[www.buckeyecorpus.osu.edu].

M. Wollmer and B. Schuller, “Enhancing spontaneous speech
recognition with BLSTM features,” in Proc. of NOLISP, Las
Palmas de Gran Canaria, Spain, 2011, pp. 17-24.

F. Weninger, B. Schuller, M. Wollmer, and G. Rigoll, “Lo-
calization of non-linguistic events in spontaneous speech by
non-negative matrix factorization and Long Short-Term Mem-
ory,” in Proc. of ICASSP, Prague, Czech Republic, 2011, pp.
5840-5843.

D.D. Lee and H. S. Seung, “Algorithms for non-negative matrix
factorization,” in Proc. of NIPS, Vancouver, Canada, 2001, pp.
556-562.

S. Fernandez, A. Graves, and J. Schmidhuber, “An application
of recurrent neural networks to discriminative keyword spotting,”
in Proc. of ICANN, Porto, Portugal, 2007, pp. 220-229.



