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ABSTRACT

In this study we investigate the effect of filter bandwidth and
spectral sampling rate of analysis filterbank for speech recog-
nition. Two experiments are conducted to evaluate the perfor-
mance of an automatic phoneme recognition system on clean
speech and speech in noise as the filter bandwidth increases
from 0.5 to 3.5 ERB and the spectral resolution changes from
1, 1.5, 2, 3, 4, to 6 samples per Bark. Results indicate that the
optimum filter bandwidth varies for different speech sounds
at different frequency ranges. A spectral sampling of 4 filters
per Bark with the filter bandwidth being ≈ 1 ERB produces
the best performance on average.

Index Terms: filter bandwidth, spectral resolution, phoneme
recognition

1. INTRODUCTION

Speech analysis is an indispensable process for automatic
speech recognition. An optimal filterbank suppresses inter-
fering noise while maximizes the speech information being
extracted. Filter bandwidth and spectral sampling rate (i.e.,
number of filters/Bark) are the two key parameters of an anal-
ysis filterbank.

Past studies show that auditory filter bandwidth has an
important effect on human speech perception, especially in
adverse environments. Comparative study across various bi-
ological species indicate that the auditory filter of human
cochlea is considerably sharper than that of other mammals,
which may facilitate speech communication [6]. People with
hearing loss, characterized by an abnormally wide psychoa-
coustic tuning curve (i.e., reduced frequency selectivity), gen-
erally have great difficulty understanding speech in noise [8].
In [2] the effect of reduced spectral resolution on speech
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perception was simulated by smoothing the envelope of the
squared short-time Fourier transform by convolving it with
a Gaussian-shaped filter. It was shown that the speech re-
ception threshold (SRT) level, defined as the signal-to-noise
ratio (SNR) at which subjects can understand 50% of spo-
ken words, elevated as the size of smoothing window approx-
imates the critical bandwidth. In another study, [5] simulated
the loss of frequency selectivity in people with moderate to se-
vere cochlear hearing loss on normal hearing listeners. While
the intelligibility of speech in quiet was hardly affected by
spectral smearing, even with a broadening factor of 6, the im-
pact of reduced frequency selectivity on speech intelligibility
in noise is substantial.

A common measure of human auditory critical bandwidth
is the Equivalent Rectangular Bandwidth (ERB)[8], defined
as the bandwidth of a rectangular window that has the same
amount of masking in noise.

ERB = 0.108 × f + 24.7 (1)

where ERB is the bandwidth in Hz, and f is the center fre-
quency in kHz. Another popular measure of critical band-
width is the Bark scale, derived based on the subject mea-
surements of loudness [7].

Bark = 6 asinh(f/600) (2)

A Bark is about 2.86 times the size of ERB at 0.1 kHz. It
then keeps decreasing until it hits 1.57 kHz, beyond which
the Bark-to-ERB ratio remains close to 1.5. Both ERB and
Bark scale were derived based on the results of human psy-
choacoustic experiments.

Recently, it was shown that auditory filters optimized for
a combined set of vowels and consonants based on the crite-
rion of band independence and maximum mutual information
matches the human physiological data [10]. Moreover, the
optimal filter derived based on the average spectrotemporal
dependencies of continuous speech closely matches the criti-
cal bandwidth of human auditory system [11].

Another important parameter for speech analysis is the
spectral sampling rate, i.e., number of filters per critical band.
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Shannon and his colleagues investigated the recognition of
clean speech with only 1 to 4 frequency channels [3]. The
spectral detail information was removed by multiplying the
subband envelopes with band-limited noise. Results show
that the average percent correctness of consonants and vowels
is around 90% with only 4 channels.

To summarize, past studies indicate that filter bandwidth
and spectral sampling rate have important effect on human
speech perception. In this study, we investigate the effect of
these two factors on automatic phoneme recognition in both
clean and noisy conditions with an aim to find an optimal
combination of the two parameters for speech analysis.

2. SYSTEM DESCRIPTION

The automatic phoneme recognition system takes an
ANN/HMM hybrid architecture [1]. The speech signal is
classified into 40 phonemes by a three-layer multi-layer per-
ceptron (MLP), followed by a Viterbi decoder which produces
a mostly likely phone sequence based on the posterior proba-
bility produced by the MLP. The speech recognizer is trained
on TIMIT speech corpus, which contains 4 hours of high-
quality speech, produced by a larger number of talkers. The
speech signal is sampled at 16kHz.

The power spectra of TIMIT speech increases by 30 dB
from 0.1 to 0.3 kHz, where it reaches the peak, and remains
at the same level until 0.7 kHz, then it drops to 25 dB at 8 kHz
with a slope of 12 dB/octave. Two types of noises with differ-
ent spectral shape, babble and subway, are used to mask the
speech signal. Assuming that the speech and noise have the
same amount of power, the power spectra of babble noise is
very similar to that of TIMIT speech, except for slight amount
of differences in the low frequency range below 0.2 kHz and
high frequency range above 4 kHz. In contrast, the power of
subway noise is concentrated around 0.15 to 0.3 kHz, where
it is about 20 dB stronger than that of TIMIT speech. Beyond
0.4 kHz, the intensity of TIMIT speech is consistently higher
than the subway noise by about 20 to 40 dB. Since speech
information is distributed mainly in the mid-frequency range
from 0.3 to 3 kHz, the babble noise introduces much more
masking effect than the subway noise.

The speech signal is encoded by the frequency domain
linear prediction modulation (FDLPm) feature [9], which pro-
vides a parametric representation of the Hilbert envelope of
subband signal. The context window and maximum fre-
quency of temporal modulation are chosen to be 300 ms and
32 Hz respectively. Given the number of filters and band-
width, the frequency decomposition is implemented by first
calculating the frequency spectrum of speech signal using the
DCT transform, then the speech spectrum is divided into mul-
tiple bands by multiplying the DCT coefficients with a set of
window functions of specified bandwidth, which is described
by

wk = 1 − 0.5(1 − cos(0.729 π(f − fk)/B) (3)

where f and fk are the frequency variable and center fre-
quency of the kth band respectively, both in Bark scale; B is
the bandwidth of the window, defined as the frequency range
where the window amplitude is greater than the 3 dB thresh-
old (0.707).
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Fig. 1. Phone Accuracy of the 10th bands (cf = 1247 Hz) as a
function of bandwidth in clean and noisy conditions. “sub10”
and “bab10” refer to subway/babble noise at 10 dB SNR.

3. EXPERIMENTS

A pilot study is conducted to explore how speech recognition
is dependent on the bandwidth of a single auditory filter (win-
dow), with the center frequency being fixed at 1247 Hz, which
is close to the center of the full frequency range on Bark scale.
The filter bandwidth varies from 0.5, 1, 2, 4, 6, 8, 10, 12 ERB
to fullband (i.e., no filtering). Results (refer to Fig. 1) indi-
cate that the phone accuracy increases sharply from 0.5 to 1
ERB, then it becomes flat but keeps increasing slowly until it
reaches the maximum at 6 ERB, suggesting that 1 ERB might
be the critical bandwidth.

Two experiments are conducted to evaluate the effect of
filter bandwidth and spectral sampling rate on the perfor-
mance of an automatic phoneme recognizer. The first experi-
ment aims to explore how phoneme recognition is dependent
on the bandwidth of individual auditory filters. The second
experiment aims to determine the optimum combination of
filter bandwidth and spectral sampling rate. Both experiments
are conducted under clean and noisy conditions.

3.1. Experiment I

The first experiment aims to check whether the “critical”
bandwidth of 1 ERB, identified from the pilot study, applies to
other frequency ranges as well. Three bands (7, 13, and 17th
bands), with center frequencies of 691, 2111, and 4132 Hz
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Fig. 2. Phone accuracy of the 7, 13, and 17th band (cf = 691, 2111, 4132 Hz respectively) as a function of bandwidth
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Fig. 3. The optimum combination of bandwidth and spectral sampling rate (labeled on the left side of each curve) for phoneme
recognition.

respectively, are selected for the experiment. The filter band-
width changes from 0.5 to 3.5 ERB with a step size of 0.5
ERB. The ASR system is tested under both clean and noisy
conditions with babble and subway noise at 20 and 10 dB
SNR.

Results (refer to Fig. 2) show that the phone accuracy of
the 7th band increases relatively fast from 0.5 to 1 ERB. It
then slows down at 1.5 ERB and becomes nearly flat, sug-
gesting that 1 ERB is critical for phoneme recognition in low
frequency range. In contrast, the 13th and 17th bands show
no critical changing in slope at 1 ERB. The gap between clean
speech and noisy speech is much bigger for the 7th band than
that of the 13th and 17th bands, where the power spectra of
the speech is significantly larger than the masking noise, sug-
gesting that filtering is important for the rejection of masking
noise in certain frequency bands. Since most of the speech
energy is located from 0.3 to 1.5 kHz, it is important that the

minimal bandwidth being no less than 1 ERB.

3.2. Experiment II

The second experiment aims to determine the optimum com-
bination of filter bandwidth and spectral sampling rate (i.e.,
number of filters per Bark) for different frequency range. Two
frequency ranges: [560,1278] Hz and [1532, 3065] Hz, each
covers 4 Barks along the auditory frequency axis, are selected
for the experiment. The spectral sampling rate increases from
1, 1.5, 2, 3, 4 to 6 filter/Bark, while the 6dB filter bandwidth
(i.e., threshold=0.5) changes from 0.5 to 3 Bark with a step
size of 0.5 (Bark scale). 1.

Results (refer to Fig. 3) show that the performance of
the phoneme recognition system increases as the overlap be-
tween neighboring filters increases from less than 25% (1 fil-

1A 6dB bandwidth in Bark scale ≈ 3dB bandwidth in ERB × 1.0785
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ter/Bark) to 75% (4 filters/Bark) for both frequency regions.
Further increasing in spectral sampling rate does not help in
improving the performance. The results in noisy conditions
are very similar to the results in clean condition. In addition,
the phoneme accuracy reaches the maximum when the band-
width ≈ 1 ERB for frequency range (560, 1278)Hz and ≈ 0.5
ERB for frequency range (1532, 3065)Hz respectively, sug-
gesting that the optimum bandwidth may change for different
frequency ranges.

4. SUMMARY

In this study, we investigated the effect of two key param-
eters for speech analysis, i.e., filter bandwidth and spectral
sampling rate, on phoneme recognition under clean and noisy
conditions. Two independent experiments are conducted to
identify the best filter bandwidth for single filters and opti-
mum combination of filter bandwidth and spectral sampling
rate for filterbank. Results show that the performance of
phoneme recognition system is highly dependent on the two
parameters. A filter bandwidth of 1 ERB produces the best
average phone accuracy under both clean and noisy condi-
tions. A sampling rate of 4 filters per Bark (i.e., 75% overlap)
produces the best performance for phoneme recognition.
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