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ABSTRACT

In this paper, we propose a filter-based histogram equaliza-

tion (FHEQ) approach for robust speech recognition. The

FHEQ approach first represents the original acoustic feature

sequence with statistic probability. Then, a temporal average

(TA) filter is applied to smooth the statistic probability se-

quence. Finally, the filtered statistic probability sequence is

transformed to form a new acoustic feature stream. Filtering

on statistic probability of a feature sequence is a novel con-

cept that can incorporate the advantages of the conventional

histogram equalization (HEQ) and temporal filtering tech-

niques for better noise robustness. Our experimental results

on the Aurora-2 and Aurora-4 tasks show that FHEQ outper-

forms the conventional cepstral mean subtraction (CMS), cep-

stral mean and variance normalization (CMVN), and HEQ.

Furthermore, we conducted a comparison test on TA-HEQ

and HEQ-TA, which apply a TA filter to smooth acoustic fea-

tures before and after the HEQ processing, respectively. The

test results show that FHEQ outperforms both TA-HEQ and

HEQ-TA, suggesting that filtering in probability is more ef-

fective than filtering in acoustic feature.

Index Terms— HEQ, FHEQ, feature normalization, tem-

poral filter, noise robust speech recognition

1. INTRODUCTION

The performance of an automatic speech recognition (ASR)

system often degrades dramatically in noisy conditions [1].

To enhance the recognition performance robustness, a lot

of approaches have been proposed [2] [3] [4]. A success-

ful category of approaches aims to produce robust features

that are less sensitive to environmental mismatch between

training and testing conditions. Temporal filtering and fea-

ture statistics normalization techniques are two sub-groups of

these robustness approaches. Temporal filtering methods fo-

cus on designing a filter to suppress noise effects in acoustic

features, and the filter is usually designed based on the fact

that important speech components for recognition are mainly

located around low modulation frequency bands (except for

the DC component). Relative spectral (RASTA) [5] [6] is a

well-known filtering method, which preserves the informative

speech components around 4 Hz while suppresses compo-

nents at other modulation frequencies. Moving average (MA)

[7] and auto-regression moving average (ARMA) [8] are an-

other two notable filtering methods; both produce temporally

smoothed acoustic features with reduced noise interferences.

Normalization methods, on the other hand, aim to reduce

the mismatch by mapping training and testing acoustic fea-

tures to make them close to each other in one or more statisti-

cal quantities. Among the well-know normalization methods,

cepstral mean subtraction (CMS) [9] [10] removes the first

moment from the cepstral features; cepstral mean and vari-

ance normalization (CMVN) [11] and higher order cepstral

moment normalization (HOCMN) [12] perform second and

higher-order moment normalizations, respectively, to make

the distribution of noisy cepstral features closer to that of the

clean ones. Histogram equalization (HEQ) is another pow-

erful normalization approach, which first ranks and converts

feature components to probability distribution (PD) values.

Then a mapping function is applied to transform the PD val-

ues to a pre-defined reference distribution [13] [14]. Based

on the type of mapping function, various HEQ approaches

have been developed. Representative examples include class-

based histogram equalization (CHEQ) [15], quantile-based

histogram equalization (QHEQ) [16], and polynomial-fit his-

togram equalization (PHEQ) [17].

In this paper, we propose a filter-based HEQ (FHEQ) algo-

rithm, which integrates the temporal filtering technique with

the HEQ framework. Similar to the conventional HEQ, the

proposed FHEQ first converts an acoustic feature sequence

into a probability sequence. Then a low-pass filter is applied

on the probability sequence with the hope to reduce the noise

effect. Finally the filtered probability sequence is transformed

to the final acoustic feature sequence. Compared with the

conventional temporal filtering methods, the presented FHEQ

is a non-linear process for the feature sequence since the fil-

ter operates on the probability values associated with the fea-

tures. Besides, FHEQ differs from HEQ primarily in that

FHEQ can alter the relative order of the features among a se-

quence while HEQ cannot. We evaluate the proposed FHEQ

on the Aurora-2 [18] and Aurora-4 [19] tasks. Experimen-

tal results confirmed that FHEQ outperforms the conventional

CMS, CMVN, and HEQ approaches on both tasks.
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Fig. 1. Procedure of the conventional HEQ algorithm

2. HISTOGRAM EQUALIZATION

The technique of histogram equalization (HEQ) normalizes

the feature sequences in the training and testing sets so that

they can approximately match a common probability distri-

bution function (PDF), known as reference PDF or target

PDF. The reference PDF can be obtained from the features

in the clean training set, or any non-negative and monotoni-

cally non-decreasing function. In HEQ, an arbitrary feature

sequence, denoted by {x1, ..., xN}, N is the total number of

frames, is viewed as the sample set of a random variable X
with PDF, FX(x). Then, applying the mapping process:

yi = F−1
ref (FX(xi)), 1 ≤ i ≤ N (1)

can make the PDF of the new feature sequence {y1, ..., yN}
approach the reference PDF, Fref (y). Fig. 1 shows the over-

all HEQ procedure. In Fig. 1, (a), (b), and (c), respectively,

show the original feature (c0 in MFCC) sequence, probability

distribution (PD) sequence, and new feature sequence; FX(.)
and F−1

ref (.) in Eq. (1), are also illustrated as (d) and (e) in

the figure, where we adopt the standard normal distribution

function as the reference PDF, Fref (.). According to Fig. 1,

each feature in the sequence is first converted to a PD value

by FX(.). Then, the PD sequence is transformed to form the

new feature sequence by F−1
ref (.).

3. FILTER-BASED HISTROGRAM EQUALIZATION

HEQ compensates the distortion of the statistics (i.e., the

mean, variance, and any higher-order moments) caused by

noise and effectively reduces the histogram mismatch be-

tween the features of the training and testing sets. However,

HEQ cannot recover the loss of the (size) ordering informa-

tion of each noise-free feature in the sequence due to the ran-

dom effects of the noise. In more detail, the functions FX ,

Fref and F−1
ref (FX) in Eq. (1) are always monotonically non-

decreasing functions, and thus the (size) ordering of the orig-

inal sequence {xi} is preserved in the new sequence {yi}.

That is,

If xi ≤ xj ,

then FX(xi) ≤ FX(xj),
and
yi = F−1

ref (FX(xi)) ≤ F−1
ref (FX(xj)) = yj .

In other words, the rank mismatch existing in the original

feature sequence {xi} is left unprocessed.

Based on the aforementioned observation, here we propose

a novel method, termed filter-based HEQ (FHEQ), to enhance

noise robustness of speech features. Briefly speaking, FHEQ

applies a filter to the PD sequence {FX(xi)} in Eq. (1) dur-

ing HEQ to alleviate the rank mismatch. The input-output

relationship of the FHEQ process is

yi = F−1
ref (

∑

k

hkFX(xi−k)), 1 ≤ i ≤ N (2)

where {hk} denotes the filter coefficients. In this study, we

select a simple two-point low-pass FIR filter, i.e. h[k] =
αδ[k] + (1 − α)δ[k − 1], 0 < α < 1, for FHEQ in Eq. (2).

Thus in FHEQ, the new PD sequence is a smoothed version of

the original one, and each new PD point is the weighted sum

of two original neighboring PD points. The idea of FHEQ is

partially motivated by the concept of temporal filtering meth-

ods like RASTA [5], MA [7], and ARMA [8]. In general,

a noise-corrupted feature sequence reveals a more oscillat-

ing characteristic than the clean counterpart, implying that

noise introduces relatively high modulation frequency distor-

tion. RASTA, MA, and ARMA suppress the high modulation

frequency portion in a feature sequence and achieve better

noise robustness. Similarly, due to the monotonic relation-

ship between the feature sequence and PD sequence, the PD

sequence for a noise-corrupted feature sequence appears more

fluctuating. As a result, we adopt a low-pass filter to smooth

the PD sequence as it should be in the clean case.

Fig. 2 shows the procedure of the FHEQ algorithm. In Fig.

2, (a), (b), (c), and (d), respectively, show the original feature

sequence, PD sequence, filtered PD sequence, and new fea-

ture sequence, where (e) illustrates the frequence response of

the low-pass filter, h[k] = 0.25δ[k] + 0.75δ[k − 1]. Simi-

lar to the conventional HEQ as shown in Fig. 1, each feature

in the sequence is first converted to a probability value. The

resulting probability sequence is then processed by a moving-

average filter. Finally, the filtered probability sequence is

transformed back to form the new feature sequence.

Compared with HEQ, the proposed FHEQ has two poten-

tial advantages:
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Fig. 2. Procedure of the FHEQ algorithm

1. FHEQ considers the inter-frame information to deter-

mine the new feature sequence, while HEQ does not. By

properly selecting the filter coefficients {hk} in Eq. (2),

FHEQ can likely reduce the rank mismatch among the

features that caused by noise.

2. FHEQ emphasizes the slow-varying portions of the PD

sequence, and thus the FHEQ-processed feature se-

quence is smoother than the HEQ-processed one. As

a result, FHEQ acts like a low-pass temporal filter and

can preserve the important modulation frequency com-

ponents for speech recognition.

4. EXPERIMENT RESULTS AND ANALYSES

This section introduces our experimental setup and provides

recognition results and discussions.

4.1. Experimental Setup

First, we describe the feature extraction procedure and briefly

introduce the Aurora-2 [18] and Aurora-4 [19] databases that

are used to test performance in this study.

4.1.1. Feature extraction

Each utterance in the training and testing sets was con-

verted into a sequence of Mel-frequency cepstral coefficients

(MFCC) vectors. Each vector included 13 static components

plus their first- and second- order time derivatives. The frame

length and shift were set to 32 ms and 10 ms, respectively.

4.1.2. Database: Aurora-2

Aurora-2 is a standardized database for connected digit

speech recognition under noisy conditions [18]. The original

clean speech utterances in Aurora-2 were acquired from the

TIDIGITs corpus [20]; then different noises were artificially

added into the clean speech to generate noisy speech data.

Aurora-2 includes three test sets: Sets A, B, and C. Speech

signals in test Sets A and B were distorted by four additive

noise individually, and speech signals in test Set C were dis-

torted by two additive noise and channel interferences; each

noise instance was added to the clean speech at six SNR lev-

els (-5 dB, 0 dB, 5 dB, 10 dB, 15 dB, and 20 dB); accord-

ingly, Aurora-2 provides 70 test conditions in total. There

are two training sets in the Aurora-2 database: clean- and

multi- condition training sets. The clean-condition training

set includes 8440 speech utterances, all recorded from a clean

condition. The multi-condition training set includes the same

8440 utterances with artificially affected by the same four

types of additive noise as those in test Set A, at five SNR

levels: 5 dB, 10 dB, 15 dB, 20 dB, and clean. In this paper,

we adopted the multi-condition training set and a complex

back-end model topology suggested in [21] to train acoustic

models. The acoustic models include 11 digit models with

silence and short pause models. Each digit model contains 16

states and 20 Gaussian mixtures per state. Silence and short

pause models include three and one states, respectively, both

with 36 Gaussian mixtures per state.

4.1.3. Database: Aurora-4

Aurora-4 is a standardized database for large vocabulary con-

tinuous speech recognition (LVCSR) under noisy conditions

[19]. The clean speech utterances in Aurora-4 were acquired

from the Wall Street Journal (WSJ0) corpus [22] and then

contaminated by different noises artificially to generate noisy

speech data. Two sampling rates, 8k Hz and 16k Hz, were

provided in Aurora-4, and we chose 8k Hz data for both train-

ing and testing processes. Aurora-4 also includes clean- and

multi- condition training sets, both consisting of 7138 utter-

ances. The Aurora-4 database comprises 14 test sets with dif-

ferent noise and channel interferences. These 14 sets were

further categorized into four sets: Set A (clean speech in the

same channel condition as the training data; set 1), Set B

(noisy speech in the same channel condition as the training

data; sets 2-7), Set C (clean speech in a different channel con-

dition to the training data; set 8), and Set D (noisy speech

in a different channel condition to the training data; sets 9-

14). The multi-condition training set was used to train acous-

tic models. In this study, we used context-dependent triphone

acoustic models, where each triphone was characterized by

an HMM. Each HMM consists of 3 states, with 8 Gaussian

mixtures per state. A tri-gram language model was prepared

based on the reference transcription of the training utterances.
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4.2. Recognition Results

In the following experiments, we reported the word error

rate (WER) as the performance measure. For Aurora-2, we

present the average WERs of the three test sets and an over-

all average result (denoted as Avg). For Aurora-4, we present

the WERs of the four test sets and an overall average result

(denoted as Avg). The low-pass filter in Eq. (2) for FHEQ is

preliminarily set to be h[k] = 0.25δ[k] + 0.75δ[k − 1].

4.2.1. Aurora-2 Results

Table 1 presents the results of the conventional HEQ and the

proposed FHEQ, along with the MFCC baseline, CMS, and

CMVN on the Aurora-2 task. Each WER value in Table 1 is

an average result over five SNR levels (0 dB, 5 dB, 10 dB, 15

dB, and 20 dB). From Table 1, we first notice that HEQ out-

performed the MFCC baseline, CMS, and CMVN. Next, we

observe that FHEQ achieved better performance than HEQ.

This set of results confirms that the integration of a filter can

effectively improve the conventional HEQ method.

In a previous study, a PHEQ with temporal average (TA)

approach (PHEQ-TA) was proposed to suppress noise com-

ponents of the PHEQ-processed acoustic features [17]. Here,

we tested the HEQ-TA performance to compare with the pro-

posed FHEQ. In a similar manner, we designed a new algo-

rithm that performed TA on acoustic features before feeding

them into the HEQ process; we named this algorithm TA-

HEQ and also tested its performance on Aurora-2. Fig. 3

illustrates the WERs of HEQ, TA-HEQ, HEQ-TA, and the

proposed FHEQ on different test sets of Aurora-2; here a

same filter was applied for TA-HEQ, HEQ-TA, and FHEQ.

From Fig. 3, we observe that both TA-HEQ and HEQ-TA

provided lower WERs than the conventional HEQ. This set of

results suggests that applying a TA filter before and after the

HEQ processing can produce more robust acoustic features.

In addition, we found that FHEQ outperformed TA-HEQ and

HEQ-TA consistently over the four test sets. The results in-

dicate that applying the filter on the PD sequences is more

effective than applying the same filter on acoustic feature se-

quences either before or after the HEQ processing.

Table 1. WER (%) of three test sets of Aurora-2

Set Set A Set B Set C Avg
Baseline 8.29 9.86 10.74 9.41

CMS 7.29 7.45 6.87 7.27

CMVN 6.87 7.50 7.31 7.21

HEQ 7.00 7.42 7.07 7.18

FHEQ 6.61 7.12 6.77 6.84
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Fig. 3. WER (%) of the MFCC baseline, HEQ, TA+HEQ,

HEQ+TA, and FHEQ on the Aurora-2 task.

4.2.2. Aurora-4 Results

In this section, we present the testing results of FHEQ on

the Aurora-4 task. Table 2 lists the recognition results of

the MFCC baseline, HEQ, and FHEQ on the four test sets

in Aurora-4. From Table 2, we observe that FHEQ out-

performed the conventional HEQ consistently over different

test sets. When compared with the MFCC baseline, FHEQ

achieved a significant 18.65% (from 22.95% to 18.67%) av-

erage WER reduction over the 14 test sets on Aurora-4.

5. CONCLUSION

In this study, we proposed an FHEQ algorithm for robust

speech recognition. Similar to the conventional HEQ, FHEQ

first converts a feature sequence into a probability sequence.

Then, a temporal moving average filter is applied on the prob-

ability sequence. Finally, the filtered probability sequence is

transformed to form a new feature stream. Applying the filter

on the probability sequence enables FHEQ to effectively re-

duce noise interferences and preserve important speech com-

ponents. From the experimental results on Aurora-2 and

Aurora-4, we verified that FHEQ can provide better perfor-

mance than the conventional HEQ for both connected digit

recognition and LVCSR under noisy conditions. Moreover

from a comparison experiment, we found that FHEQ outper-

formed TA-HEQ and HEQ-TA, suggesting that applying the

filter on the probability sequences is more effective than ap-

plying the same filter on acoustic feature sequences.

Table 2. WERs (%) of four test sets on Aurora-4

Set A B C D Avg
Baseline 10.83 20.66 16.57 28.34 22.95

HEQ 10.46 17.23 13.33 22.92 18.91

FHEQ 9.39 17.21 12.67 22.69 18.67

7115



6. REFERENCES

[1] Y. Gong, “Speech recognition in noisy environments: A

survey,” Speech Communication, vol. 16, pp. 261–291,

1995.

[2] S. Molau, D. Keysers, and H. Ney, “Matching train-

ing and test data distributions for robust speech recog-

nition,” Speech Communication, vol. 41, pp. 579–601,

2003.

[3] X. Huang, A. Acero, and H.-W. Hon, Spoken Language
Processing: A Guide to Theory, Algorithm and System
Development. New Jersy: Prentice Hall PTR, 2001.

[4] L.-C. Sun and L.-S. Lee, “Modulation spectrum equal-

ization for improved robust speech recognition,” IEEE
Transactions on Audio, Speech and Language Process-
ing, vol. 20, pp. 828–843, 2012.

[5] H. Hermansky and N. Morgan, “Rasta processing of

speech,” IEEE Transactions on Speech and Audio Pro-
cessing, vol. 2, pp. 587–589, 1994.

[6] S. Tibrewala and H. Hermansky, “Multi-band and adap-

tation approaches to robust speech recognition,” in Proc.
European Conference on Speech Communication and
Technology (EUROSPEECH), pp. 2619–2622, 1997.

[7] C.-P. Chen, J. A. Bilmes, and K. Kirchhoff, “Low-

resource noise-robust feature post-processing on aurora

2.0,” in Proc. International Conference on Spoken Lan-
guage Processing (ICSLP), pp. 2445–2448, 2002.

[8] C.-P. Chen, K. Filali, and J. A. Bilmes, “Frontend post-

processing and backend model enhancement on the au-

rora 2.0/3.0 databases,” in Proc. International Con-
ference on Speech and Language Processing (ICSLP),
pp. 241–244, 2002.

[9] D. B. Olli Viikki and K. Laurila, “A recursive fea-

ture vector normalization approach for robust speech

recognition in noise,” in Proc. International Conference
on Acoustic, Speech and Signal Processing (ICASSP),
pp. 733 –736, 1998.

[10] H. K. Kim and R. C. Rose, “Cepstrum-domain acoustic

feature compensation based on decomposition of speech

and noise for asr in noisy environments,” IEEE Transac-
tions on Speech and Audio Processing, vol. 11, pp. 435–

446, 2003.

[11] S. Tibrewala and H. Hermansky, “Multi-band and adap-

tation approaches to robust speech recognition,” in Proc.
European Conference on Speech Communication and
Technology (EUROSPEECH), pp. 2619–2622, 1997.

[12] C.-W. Hsu and L.-S. Lee, “Higher order cepstral mo-

ment normalization for improved robust speech recog-

nition,” IEEE Transactions on Audio, Speech and Lan-
guage Processing, vol. 17, pp. 205–220, 2009.

[13] D. P. Ibm, S. Dharanipragada, and M. Padmanabhan, “A

nonlinear unsupervised adaptation technique for speech

recognition,” in Proc. International Conference on Spo-
ken Language Processing (ICSLP), pp. 556–559, 2000.

[14] A. de la Torre, A. M. Peinado, J. C. Segura, J. L. Prez-

Crdoba, M. C. Bentez, and A. J. Rubio, “Histogram

equalization of speech representation for robust speech

recognition,” IEEE Transactions on Speech and Audio
Processing, vol. 13, pp. 355–366, 2005.

[15] S. K. Youngjoo Suh and H. Kim, “Compensating acous-

tic mismatch using class-based histogram equalization

for robust speech recognition,” EURASIP Journal on
Advances in Signal Processing, vol. 2007, 2007.

[16] F. Hilger, H. Ney, and L. F. I. Vi, “Quantile based his-

togram equalization for noise robust speech recogni-

tion,” in Proc. European Conference on Speech Commu-
nication and Technology (Eurospeech), pp. 1135–1138,

2001.

[17] S.-H. Lin, Y.-M. Yeh, and B. Chen, “Exploiting

polynomial-fit histogram equalization and temporal av-

erage for robust speech recognition,” in Proc. Interna-
tional Conference on Spoken Language Processing (IC-
SLP), pp. 1135–1138, 2006.

[18] D. Pearce and H.-G. Hirsch, “The aurora experimen-

tal framework for the performance evaluation of speech

recognition systems under noisy conditions,” in Proc.
International Conference on Spoken Language Process-
ing (Interspeech), pp. 29–32, 2000.

[19] N. Parihar and J. Picone, “Aurora working group: Dsr

front end lvcsr evaluation au/384/02,” in Institutefor Sig-
nal and Information Processing Report, 2002.

[20] R. Leonard, “A database for speaker-independent digit

recognition,” in Proc. International Conference on
Acoustic, Speech and Signal Processing (ICASSP),
pp. 328–331, 1984.

[21] S. Young, G. Evermann, M. Gales, T. Hain, D. Kershaw,

G. Moore, J. Odell, D. Ollason, D. Povey, V. Valtchev,

and P. Woodland, The HTK Book (for HTK Version 3.3).
Cambridge University Engineering Department, 2005.

[22] D. B. Paul and J. M. Baker, “The design for the wall

street journal-based csr corpus,” in Proc. International
Conference on Spoken Language Processing (ICSLP),
1992.

7116


