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ABSTRACT

We present a novel framework for joint estimation of speech
and noise statistics using a Markov chain Monte Carlo ap-
proximation. The underlying distributions of the speech and
noise components of noisy speech are estimated at each frame
and inferences are made from these distributions. The clean
speech is approximated by a discrete distribution, from which
new features are extracted and used in the recognition pro-
cess. The availability of information about the noise statistics
enables the algorithm to handle non-stationary noise within
an utterance and also improves the overall recognition perfor-
mance when compared to the previously available sequential
Monte Carlo (particle filter) methods for noisy speech com-
pensation. We report experimental results obtained with the
Aurora-2 connected digit recognition task and achieve an er-
ror reduction of 12.87% over state-of-the-art multi-condition
training.

Index Terms— Monte Carlo, Markov chain Monte Carlo,
robust speech recognition, noise compensation, Gibbs sam-
pling, particle filters

1. INTRODUCTION

Modern Automatic Speech Recognition (ASR) systems work
well when they are trained in an environment that matches
well with the testing environment. However, when there is an
acoustic mismatch between the training and the testing con-
ditions, the performance is significantly inferior to what is
achieved by a typical human listener. Many approaches have
been adopted to overcome the degradation of ASR systems
in adverse conditions. At the model level, hidden Markov
models (HMM), which are a standard in modern ASR sys-
tems, can be adapted using maximum a priori (MAP) [1],
maximum linear likelihood regression (MLLR) [2] or their
variants. At the feature stage, vector Taylor series (VTS) [3],
cepstral mean subtraction (CMS) [4] and ETSI [5] are some
of the techniques that have been shown to work well and have
been widely adopted in the speech recognition community.

Despite improvements achieved by these techniques,
modern ASR systems under-perform significantly compared
to a human listener who can achieve an intelligibility of
70 − 80% at SNRs as low as −6dB [6]. If the speech and

noise sources are separated by an angle of 90◦ from one an-
other, this intelligibility can be maintained even at −16dB.
The superior performance in human perception can partly be
attributed to their ability to track speech in the presence of
other interfering signals [7].

Tracking the speech signal of interest can potentially im-
prove the performance of ASR systems also. Nevertheless,
conventional tracking techniques such as Kalman Filter [8]
and extended Kalman filter [9] cannot be used for tracking
the speech signal because state transition models are not avail-
able for speech and the distortion models in the presence of
noise are highly non-linear in the feature domain. Monte
Carlo methods are numerical methods based on random sam-
pling and do not require analytical solutions to solve prob-
lems. Therefore, these methods can be deployed in situations
where analytical solutions do not exist. Sequential Monte
Carlo methods, also commonly known as particle filters, were
first used in speech recognition paradigm in [10] [11] [12].
The particle filter in these algorithms did not track the speech
signal directly, but instead tracked the noise signal, which was
subsequently used for estimation of the clean speech signal.
A more direct speech tracking approach was proposed in par-
ticle filter compensation (PFC) [13] [14], in which the clean
speech distribution was estimated using an importance sam-
pling scheme, where samples were generated using statistics
from HMMs and the weights of these samples were computed
using the distortion model of the speech signal under noisy
conditions [13]. Further, a joint speech and noise tracking al-
gorithm was proposed in [15], where noise is tracked using a
particle filter that runs in parallel to the speech tracking algo-
rithm.

In this paper, we propose a Markov chain Monte Carlo
(MCMC) method for simultaneously estimating the distribu-
tions of the speech and noise components of noisy speech.
The advantage of MCMC is that the noise is generated using
multiple samples from the speech distribution and similarly,
speech is updated using information from the noise samples.
This ensures a better coupling between estimation of speech
and noise when compared to the parallel tracking approaches
[15], where a point estimate of speech is used in noise track-
ing.

The MCMC framework for joint clean speech and noise
estimation is tested on the Aurora-2 connected digit recogni-
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tion task. We achieve an error reduction of 12.87% at 0 −
20dB when compared with multi-condition trained models.
The performance is better then the cases where only speech is
tracked (error reduction improves slightly) and where speech
and noise are tracked by two separate particle filters running
in parallel.

2. PARTICLE FILTER APPROACH TO SPEECH
FEATURE COMPENSATION

Speech tracking using PFC algorithm is summarized in the
following steps [13]:

1. Posterior density of speech, based on the current obser-
vation is represented by a finite number of set points,

p(xt|y0: t) =
Ns∑
s=1

w
(s)
t δ(xt − x(s)t ) (1)

where x(s)t for s = 1, ..., Ns are the support points of
PF.

2. The weight vector, w(s)
t ,associated with the support

points[16] is computed with:

w
(s)
t = w

(s)
t−1

p(yt|x(s)t )p(x
(s)
t |x

(s)
t−1)

q(x
(s)
t |x

(s)
t−1, yt)

(2)

3. PFC is done in the spectral domain. Given additive
noise with no channel effects [17], we have

y = x+ log(1 + en−x) (3)

Then, we can evaluate p(y|x) using

p(y|x) = F ′(u)

= p(u)
ey−x

ey−x − 1

(4)

where x represents clean speech and n represents the
noise.

4. The density q(x(s)t |x
(s)
t−1, yt) is used to generate the par-

ticle samples. In the PFC approach, we cluster the
HMM states into M clusters and then use one of these
clusters to generate the particle samples.

5. After generating samples, the weight for each sample is
computed. We estimate the compensated features using
discrete approximation of the expectation as

xt =

Ns∑
s=1

w
(s)
t x

(s)
t (5)

3. SPEECH AND NOISE ESTIMATION USING
MCMC

For the joint estimation of the noise and the speech signal,
the goal is to generate the posterior approximation for both
signals and then make inferences from these approximate
distributions. Consider a set of parameters a1, a2, ..., ap
such that we want to estimate p(a1, a2, ..., ap|y1, y2, ..., yn),
where y1, y2, ..., yn is the set of observations. Given a start-
ing point a(0)1 , a

(0)
2 , ..., a

(0)
p , the MCMC generates a(s)j from

a
(s−1)
1 , a

(s−1)
2 , ..., a

(s−1)
j−1 , a

(s−1)
j+1 , ..., a

(s−1)
p as follows [18]

1. Sample a(s)1 ∼ p(a
(s)
1 |a

(s−1)
2 , a

(s−1)
3 , ..., a

(s−1)
p )

2. Sample a(s)2 ∼ p(a
(s)
2 |a

(s−1)
1 , a

(s−1)
3 , ..., a

(s−1)
p )

...

3. Sample a(s)p ∼ p(a(s)1 |a
(s−1)
2 , a

(s−1)
3 , ..., a

(s−1)
p−1 )

The resultant samples can be seen from two differ-
ent perspectives. First, the sequence of the parameters
a(1),a(2), ...,a(s), where a(s) = {a(s)1 , a

(s)
2 , ..., a

(s)
p }, are

dependent. The parameter a(s) is conditionally independent
on a(1),a(2), ...,a(s−2) given a(s−1) and therefore called the
Markov chain. The other perspective is that the marginal
distribution of parameter aj is given by a

(0)
j , a

(1)
j , ..., a

(s)
j .

This sampling distribution approaches the target distribution
as s → ∞. These samples can also be used to approximate
the expected value of a function g using

1

S

S∑
s=1

g(aj)→ E[g(aj)] (6)

The MCMC approach allows us to estimate the joint dis-
tribution p(nt, xt|yt), from which we can extract the marginal
distribution of interest p(xt|yt). The straight forward imple-
mentation of MCMC described above requires that we can
generate samples directly from

p(nt|xt, yt)
p(xt|nt, yt)

(7)

However, it’s not possible to generate samples from these
distributions. To overcome this problem, the more general
Metropolis algorithm can be used [19]. Specifically, we em-
ploy a combination of importance sampling and Metropo-
lis sampling algorithm. Compared to the jumping distribu-
tion used in Metropolis-Hastings algorithm [20], where sam-
ples are rejected with probability r, the importance sampling
scheme is more efficient. Another motivation for using impor-
tance sampling is the availability of the required framework
from [13] [14]. We can evaluate p(x(s)t |n

(s−1)
t , yt) using

p(yt|x(s)t ) = p(ut)
eyt−x(s)

t

eyt−x(s)
t − 1

(8)
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where x(s)t represents the sth clean speech sample at time t
and the noise density is given by N (n

(s−1)
t , σn) and ut =

log(eyt−x(s)
t −1)+xt with F (ut) being the Gaussian cumula-

tive function with mean n(s−1)t and variance σ2
n. Similarly, to

evaluate p(n(s)t |x
(s−1)
t , yt), we make use of the relation [15]

p(yt|nt) =
1√

2πσ2
x,t

exp[− 1

2σ2
x,t

(yt

− log(1 + exp(n
(s)
t − x

(s−1)
t ))− x(s−1)t )2]

(9)

The conditional distributions cover only a part of the dis-
tribution approximation by providing a mechanism to evalu-
ate the weights of the samples. Prior to that, samples have
to be available at the right locations. To generate the speech
samples, we use the statistics available from HMMs. It is im-
portant to emphasize here that sample generation for xt is not
dependent on the nt samples, rather, it is the computation of
weights for xt that is conditioned on noise samples. On the
contrary, the location of samples and the weights for noise
samples are both conditioned on the clean speech samples.

For each frame t, the algorithm proceeds as follows:

1. Generate sample xst using HMMs

2. Compute weight for xst using ns−1t in Eq. (8)

3. Generate sample nst from xs−1t using Eq. (3)

4. Compute weight for nst using xs−1t Eq. (5)

5. Repeat if s < Ns

where Ns is the desired number of samples. Once the
point density of the clean speech features is available, we es-
timate the compensated features using Eq. (5).

4. COMPARISON OF PFC AND MCMC
APPROACHES

The comparison of the PFC approach for speech compensa-
tion and the MCMC approach is laid out in Figure 1. The
dashed arrows indicate the inter-dependencies between the
speech distribution and the noise distribution. The cluster
selection mechanism is the same for the PFC and the MCMC
method. The speech samples, generated from the selected
cluster, directly influence the generation of the noise samples,
thereby ensuring a tight coupling between the speech and
the noise samples. The noise statistics are updated using the
approximation represented by the noise samples and their
weights. Whereas the weights of the speech samples in the
PFC algorithm are computed using noise statistics collected
from the background, the speech samples weights in the
MCMC algorithm are computed using noise statistics that are
updated dynamically during the utterance. Since the speech
distribution is approximated using noise statistics more spe-
cific to the current frame in MCMC, the approximation is
improved compared to PFC.

Fig. 1. Comparison of PFC and MCMC

5. EXPERIMENTS AND ANALYSIS

To evaluate the proposed framework, we experimented on the
Aurora-2 connected digit recognition task. Compensation is
carried out in the 23 channel fbank feature domain. From the
test speech, we extracted the 39 element features (13 MFCCs
and their first and second time derivatives) as well as 23 chan-
nel filter-bank features thereby forming two streams. The
1− best transcript, used for cluster selection, was determined
by evaluating the MFCC stream with MC models. The speech
samples are generated using the selected clusters. This helps
us in preventing the sticking problem, which is a vulnera-
bility of the the MCMC algorithms. If the speech sample
is generated based on the noise sample and vice versa, then
from equation (3), the samples would be concentrated in very
small regions. This is so because after yt is observed, know-
ing one of the nt and xt gives us quite precise information of
the other. The sequence of samples generated for the speech
and the noise signals is shown in Figure 2. The dependence
of the noise samples is observable. The noise samples are
related to the speech samples through the observation. Note
that for higher value of the speech sample, the value for noise
sample is smaller and vice versa.

The improvement obtained with MCMC in terms of er-
ror reduction in word accuracy over multi-condition training
is given in Table 1. The second column of the table details
the error reduction obtained with PFC over MC. The recog-
nition performance for MCMC algorithm, when compared
with PFC in terms of error reduction in word accuracy, im-
proves for all noise levels except at lower SNRs i.e. 0dB and
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Fig. 2. Sample sequence for MCMC

−5dB (15.97% for PFC versus 15.26% for MCMC). Since
the noise signal is dominant compared to the speech signal
at these SNRs, the assumption that the noise samples can be
well placed by indirectly using the speech statistics does not
seem to hold. This results in poor noise estimates, and conse-
quently, degradation in the recognition performance. Overall,
an error reduction of 12.87% is achieved over multi-condition
training compared to the 12.16% obtained with PFC for the
0dB − 20dB range.

Table 1. Error reduction over MC
ER MCMC PFC

20db 20.1% 14.5%
15db 20.3% 10.6%
10db 8.9% 1.9%
5db 8.1% 4.1%
0db 10.35% 12.63%

0-20db 12.87% 12.16%

The noise information from multiple frames, t − Np/2
to t + Np/2 (Np frames), is combined together and used to
recompute the weight of the xt samples, i.e., the weight for
the speech samples is recomputed after getting the noise es-
timate from Np frames. Combining noise information from
multiple frames improves the performance of the recognizer.
Whereas the word accuracy for Np = 30 is 90.2%, the cor-
responding performance for Np = 60 and Np = 15 is 90.1%
and 90.06% respectively. The performance is inferior if Np

is either smaller or larger than the value 30. If Np is large,
the smaller variations in the noise estimate are averaged out
and the performance is comparable to the case where the noise
statistics are considered to be non-varying. On the other hand,
the reduction in performance for Np smaller than 30 is due to
the erroneous estimate of noise in the smaller intervals. The
noise estimation for a particular fbank channel is depicted in
Figure 3. The errors in the noise estimate cause correspond-
ing fluctuations in the compensated speech estimate. These
fluctuations are undesirable from the machine learning per-

Fig. 3. Actual vs. estiamted noise at 10dB noise level

spective. For a better recognition performance, it is desirable
that the behavior is consistent not only within training data
but also between training and test data. The random varia-
tions caused by wrong noise estimate introduces discrepan-
cies in both training and testing data. Increasing the num-
ber of frames, however, averages out these variations and im-
proves the recognition performance.

The performance achieved with MCMC is also better than
the improvement obtained from tracking the speech signal us-
ing a particle filter that is running parallel to the PFC algo-
rithm [15]. The comparison for subway noise is given in Ta-
ble 2. Both approaches still fall short of the case where exact
noise information (average over 30 frames) is available and
therefore, the margin for improvement in noise estimation is
still present.

Table 2. Noise Estimation Comparison
Word Joint Noise Joint Noise Noise

Accuracy Tracking With Tracking With Known
MCMC Two PFs

0-20dB 91.25% 91.18% 91.41%

6. CONCLUSIONS

We have proposed a joint clean speech and noise tracking ap-
proach using an MCMC algorithm. The noise samples are
dependent on the location of the speech samples which are
generated using the statistical information available from the
HMMs. Results show that estimating noise information by
MCMC algorithm and then using this information for speech
compensation improves the speech recognition performance.
However, a margin of improvement still exists to come at par
with the case when noise information is better known. In fu-
ture, other MCMC techniques will be explored to improve the
noise estimate and thus the ASR performance.
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