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ABSTRACT

The sub-band Frequency Domain Linear Prediction (FDLP) tech-

nique estimates autoregressive models of Hilbert envelopes of sub-

band signals, from segments of discrete cosine transform (DCT) of

a speech signal, using windows. Shapes of the windows and their

positions on the cosine transform of the signal determine implied

filtering of the signal. Thus, the choices of shape, position and num-

ber of these windows can be critical for the performance of the FDLP

technique. So far, we have used Gaussian or rectangular windows. In

this paper asymmetric cochlear-like filters are being studied. Further,

a frequency differentiation operation, that introduces an additional

set of parameters describing local spectral slope in each frequency

sub-band, is introduced to increase the robustness of sub-band en-

velopes in noise. The performance gains achieved by these changes

are reported in a variety of additive noise conditions, with an average

relative improvement of 8.04% in phoneme recognition accuracy.

Index Terms— cochlear filters, spectral differentiation, robust

speech recognition

1. INTRODUCTION

The FDLP technique ([1]) is used to extract the amplitude modula-

tion (AM) component of a signal using autoregressive estimates of

Hilbert envelopes, computed by linear prediction on the discrete co-

sine transform (DCT) of the signal. Sub-band FDLP ([2]), extends

this technique to estimate the Hilbert envelopes of the sub-band sig-

nals, using windowed DCT coefficients. These sub-band envelope

estimates stacked horizontally provide a time-frequency decompo-

sition of the signal (reminiscent of the spectrograms computed by

the SpectrographTM), as an alternative to the conventional short-term

Fourier transform derived spectral representation.

A series of efforts have been made to identify the optimal FDLP

parameters, for speech and speaker recognition tasks. Important pa-

rameters in the FDLP feature extraction framework are the filter-

bank, characterized by the shape, bandwidth and number of win-

dows, and the pole order. Effect of these parameters on the perfor-

mance of FDLP features has been explored previously, for reverber-

ant environments. Among such efforts, Thomas et al. [3], show that

uniform windows on linear axis (96 bands) are optimal. Mallidi et al.

[4], further explored the effect of model order, envelope expansion
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factor and bandwidth of the DCT windows,in the linear filter bank,

on word recognition accuracy in reverberant environments. However

no effort has been so far made either to identify the optimal shape of

cosine transform widows, that determine implied signal filtering, or

to optimize FDLP performance in noise. In this work we attempt to

fill this void.

Gaussian cosine transform windows, applied in FDLP so far,

are very crude emulations of known properties of cochlear filtering

in human hearing. Filter shapes, which more closely emulate the

filtering in human cochlea might be preferable. A variety of cochlear

filter banks have previously been used for improving robustness of

processing in noise ([5],[6],[7],[8]).

Distortions, which often result in constant shifts of FDLP-

estimated spectro-temporal envelopes (e.g., additive noise) or their

logarithmic counterparts (e.g., convolutive distortions), can be tack-

led by filtering these envelopes. These techniques include temporal

modulation spectrum filtering operations like RASTA ([9]) and sim-

ple filtering operations along frequency axis ([10], [11], [12], [13],

[14], [15]). Gain normalization (GN) [16] and dynamic compression

[17], which are temporal modulation filtering operations used in the

FDLP framework, have been reported to be effective on additive

([17]) and convolutive ([4]) distortions. In this paper we introduce

spectral differentiation, which is a high pass filtering operation

along spectral axis, into FDLP to further increase robustness of this

representation.

In this paper a cochlear filter-bank is introduced into the FDLP

framework. Broader bandwidths, asymmetric shapes and an over-

sampled frequency axis are some of the characteristic features of

these cochlear filters. Each of these features is applied to the filter-

bank and corresponding changes to the phoneme recognition accu-

racy are reported. Further, spectral differentiation is also introduced.

Optimal parameters of the cochlear filter-bank for speech recogni-

tion in noisy environments are identified.

The organization of this paper is as follows: Section 2 briefly

outlines the sub-band FDLP technique. Section 3 details cochlear

window design. Section 4 describes the experimental setup. Finally,

results and conclusions are presented in the Sections 5 and 6 respec-

tively.

2. FILTER-BANKS FOR SUB-BAND FDLP

Let x be a real column vector that represents a discrete signal x[n]
of length N. Let D represent the DCT matrix whose elements are

defined by

D[k, n] = a(k)cos(
π(2n− 1)(k − 1)

2N
) k, n = 1, 2, ..., N (1)
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For this unitary DCT matrix we have D−1 = DT . The vector

Dx, represents the DCT coefficients of the signal x.

Let w represent a column vector, defining a window in the DCT

domain. The operation Dx ⊙ w, where ⊙ represents the Hadamard

(element-wise) product, corresponds to the symmetric convolution

of the signal x[n] with the sequence D−1w. This symmetric convo-

lution operation can be interpreted as circular convolution of a linear

phase filter hw[n], formed after implicit left-sided symmetric exten-

sion of D−1w, with the symmetrically padded data sequence x[n]
[18].

Thus, to implement a filter in the DCT domain, it is sufficient

to compute the Hadamard product of the DCT of the signal, with

the filter’s frequency response, computed at corresponding frequen-

cies [19]. The resulting product corresponds to the filtered signal,

exactly in case of a linear phase filter and approximately for a non-

linear phase filter. Hence any filter-bank can be emulated in the sub-

band FDLP technique by designing windows which represent the

magnitude responses of the filters in the filter-bank. The problem of

filter-bank design is transformed to a window design problem, with

shape, position and number of windows as the design parameters.

In the following sections a filter bank with the desired magnitude

responses is implemented in the sub-band FDLP technique through

the design of windows. The parameters of these windows are op-

timized for robust phoneme recognition. The phoneme recognition

setup is described in Section 4.

Figure 1 summarizes the sub-band FDLP technique and the fea-

ture extraction procedure. In the first stage, the signal x[n] is trans-

formed to the DCT domain. The DCT of the signal is then win-

dowed, using a choice of windows which emulate a desired filter-

bank. Spectral differentiation, if performed, is done by subtract-

ing the corresponding DCT components from consecutive windows.

The windowed DCT components are then used used to estimate the

Hilbert envelope of the sub-band signal, which is gain-normalized.

The sub-band envelopes are integrated in 25 ms frames with a hop of

of 10 ms, to obtain the sub-band energy representation. These out-

puts are then compressed and downsampled (along frequency axis)

as described in Section 4, to obtain the final feature representation

presented to the neural network.

The proposed method changes the sub-band decomposition

block (Stage I) and post-processing block (Stage II) of the FDLP

pipeline.

3. EMULATING A COCHLEAR FILTERBANK

Sub-band FDLP technique has so far used Gaussian windows to

optimize the spectro-temporal properties for analysis. Athineos et

al. [20] argue that better spectral auto-correlation estimates, derived

from use of these windows, lead to better estimates of the Hilbert

envelopes. These windows, emulating the mel filter-bank, consist

of overlapping Gaussian windows, with a variance of 1 on the mel

scale. We will refer to this set of windows here as Γ.

Cochlea-like filtering with broader and asymmetric magnitude

responses (as implemented e.g. in [21]) has been shown to provide

robustness under mismatched conditions in speech processing appli-

cations. In this section, a set of asymmetric windows are designed

to emulate the cochlear filter bank. The shape, bandwidth and num-

ber of these windows is experimentally selected for optimal perfor-

mance in noisy conditions. Further, differentiation along frequency

axis ([10],[11],[12]) was implemented to improve performance with

these asymmetric windows.

Asymmetric windows: Compared to mel filter bank, the key

difference in a cochlear-like filter bank is the highly asymmetric

magnitude response of the filters. Hence windows emulating these

filters, would have asymmetric shapes. To allow for systematic op-

timization, it is desirable to provide a parametric representation of

such asymmetric windows, that can be controlled by these explicit

set of parameters. Hence we use windows defined in perceptual lin-

ear prediction (PLP) technique ([21]), for spectral integration. These

windows are piece-wise continuous and asymmetric, with parame-

ters to control the lower frequency decay, higher frequency decay

and the bandwidth of the filter. These piece-wise continuous win-

dows are defined on the Bark frequency scale, Ω, as

Ψ(Ω;Ωc) =











10α(Ω−Ωc+Ωw/2) Ω− Ωc ≤ −Ωw/2,

1 −Ωw/2 < Ω− Ωc < Ωw/2,

10−β(Ω−Ωc−Ωw/2) Ω− Ωc ≥ Ωw/2,

(2)

where Ωc is the center frequency of the current window, α and β
are the lower frequency and higher frequency steepness factors and

Ωw is the width of the flat top. The Bark-Hertz transformation used

here is ([22])

Ω(ω) = 6ln{ω/1200π + [(ω/1200π)2 + 1]0.5} (3)

Equation 2 is used to define a set of windows Ψ(Ω;α,β,Ωw)
at various center frequencies Ωc, where α,β or Ωw could also be

functions of Ωc. The parameters Ωw , α and β of these windows

are determined to emulate a cochlear filter bank. The set of windows

Ψ(Ω;α,β,Ωw) is represented by the shorter form Ψ, throughout

this paper.

To emulate the heavy asymmetry towards the lower frequencies

in typical cochlear windows (e.g., [13]) the α parameter in the filters

(Ψ) is reduced exponentially with Ωc. Thus the filters centered at

higher frequencies have a wider lower frequency spread than filters

at the lower frequencies, on the bark frequency scale.

Performance of asymmetric windows, Ψ, is compared to the

symmetric windows ,Γ, in the phoneme recognition task, described

in Section 4. The Gaussian windows were distributed one per mel,

with variance of 1 mel. The asymmetric windows were designed to

match the number of Gaussian windows. The value of Ωw is chosen

as 0.8 bark, with exponentially decreasing α and constant β of 2.5.

Figure 2 compares the windows from Ψ and Γ for a center frequency

of ωc.

Table 1 compares the average performance of these two win-

dows for 5 different noise conditions, at 5 different SNRs. It can

be seen that the cochlear windows (Ψ) perform comparatively bet-

ter than the Gaussian windows (Γ). The average relative increase in

accuracy, across all conditions at all SNRs, on the use of cochlear

windows is 5.38%.

Spectral differentiation: Spectral differentiation (SD), which

is a difference operation along spectral axis, highlights the rapid dis-

continuities along the spectral axis, and alleviates constant trends in

the spectrum. Initial experiments applying spectral differentiation

on Gaussian windows resulted in severe drop in the performance,

hence the asymmetric windows were chosen for its application. It

is implemented as a difference of the windowed DCT (Dx ⊙ w), for

neighbouring windows (w) in Ψ. It is to be noted that features ex-

tracted from sub-band envelopes, generated after spectral differenti-

ation, were used as an independent feature stream and not combined

with non spectral-differentiated features.
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Fig. 1. Block Schematic of sub-band FDLP technique

Table 1. Average Phoneme Recognition accuracy across 5 noises, at 5 different SNRs (in %)

SNR
Filters

Γ Ψ Ψ + SD Ψbest
Relative Change in

accuracy

(47 filters/8KHz) (47 filters/8KHz) (47 filters/8KHz)
(Ωw = 0.2,3

filters/bark)
(Ψbest vs Γ)

clean 71.4 69.3 67.6 69.7 -2.38

20 59.62 61.03 61.96 63.23 6.06

15 51.95 54.46 55.75 56.55 8.85

10 42.91 45.34 46.96 47.19 9.97

5 34.34 36.14 37.55 37.69 9.74

0 27.77 29.01 30.28 30.58 10.10

From Table 1, it can be seen that SD is helpful in many con-

ditions when performed on cochlear windows. The performance of

cochlear windows (with SD) is better than the symmetric windows,

in all noise conditions, with an average relative increase of 8.03%,

across all noise conditions. However there was a drop in the per-

formance in clean condition. On analysis of the phoneme confu-

sion matrices, corresponding to the two types of windows, it was

observed that stop consonants were the worst affected phone class,

in the clean condition, on the use of cochlear windows. This was at-

tributed to the loss of temporal resolution due to the use of cochlear

windows with discontinuities. Currently efforts are being made to

verify if the use of smoother asymmetric windows can alleviate this

loss.

The bandwidth and number of cochlear windows was varied, to

optimize for robustness, while reducing the effect on performance in

clean condition. Bandwidth of the filters implied by these windows,

is controlled by the flat top width (Ωw) of the window, since Ωw

is related to the bandwidth of the filter by an additive constant, for

a given α and β (see Equation 2). Highest recognition accuracies

were observed at 3 filters/bark (63 filters/8KHz) with 0.2 bark flat

width. However, the number of filter bank outputs was reduced to

1 filters/bark, after performing the spatial differentiation and gain

normalization operations at higher frequency resolution, to reduce

the dimensionality of the input feature vector.

Shapes of the windows Ψ for various center frequencies (ωc),

with α(ωc) decreasing exponentially, β(ωc) = 2.5 and Ωw(ωc) =

0.2 are shown in Figure 3.

4. EXPERIMENTAL SETUP

Database: Experiments were done using TIMIT database and the

phoneme recognition system is trained on clean speech sampled

16 KHz. The training data consists of 3400 utterances from 475

speakers, cross-validation data set consists of 296 utterances from

37 speakers and the test data set consists of 1344 utterances from

168 speakers. The TIMIT database, which is hand-labeled using 61

labels is mapped to the standard set of 39 phonemes.

TIMIT test set corrupted with five different noise conditions

from NOISEX-92 database [23] (factory floor noise (I), speech bab-

ble noise, fighter jet (F16) cockpit noise, car interior (Volvo 340)

noise and military tank (leopard) noise), forms the development

set to optimize the parameters of the asymmetric filter-bank. 11

different noise conditions (benz, buccaneer(I), buccaneer(II), car,

destroyer-ops, exhibition-hall, factory(II), m109, restaurant, street

and subway), not used in optimization, form the test data in the final

evaluation.

Back-End: The phoneme recognition system is based on Hid-

den Markov Model - Artificial Neural Network (HMM-ANN)

paradigm [24]. The system uses a MLP-based hierarchical phoneme

posterior estimator ([25]) which generates the posteriors used for

phoneme decoding. The hierarchical phoneme posterior estimator

consists of a cascade of two three-layer MLPs, each with 1500
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Fig. 3. Shapes of windows Ψ with variable α, β = 2.5, Ωw = 0.2
bark and with 3 filters/bark (on a linear frequency scale)

hidden neurons and 40 output neurons, representing the phoneme

classes (including silence). The two ANNs are trained using the

standard back propagation algorithm with cross entropy as the train-

ing error. For the decoding step, all phonemes are considered equally

probable (no language model). The performance of phoneme recog-

nition is measured in terms of phoneme accuracy (excluding si-

lence). The HMM-ANN recognition system was trained only on the

original clean train set and tested on the clean and noisy versions

of the test. This training procedure helps test the robustness of

proposed feature extraction method.

Front-End: Mohamed et al. ([26]) successfully argue that log-

arithmic spectral features are preferred over cepstral representations

as inputs for neural nets, as the discriminative information is spread

over all the coefficients. Further, cubic compressed spectra were

found to perform better than log compressed spectra [21]. Hence

cubic compressed spectral energies from short term integrated sub-

band envelopes, along with their first and second temporal differen-

tials, were used as input feature vector. The first MLP was trained

with a temporal context of 9 frames. The input feature vector for the

second MLP was formed from the posterior estimates generated by

the first MLP with a temporal context of 23 frames ([25]).

5. RESULTS

Cochlear windows Ψ (with spectral differentiation (SD), 3 win-

dows/bark and Ωw=0.2) were compared with the Gaussian windows

Γ (1 window/mel and variance=1 mel). Average phoneme recog-

nition accuracy was measured, in 11 different noise conditions

from NOISEX-92 database [23] at 5 different SNRs. These noise

conditions do not overlap with the previous conditions, and form an

unseen test set. The average relative increase in recognition accuracy

was 8.04%, across all these conditions.

Average phoneme recognition accuracies at various SNRs are

tabulated in Table 2.

Table 2. Average Phoneme Recognition accuracy across 11 noises

at 5 different SNRs (in %)

SNR (dB)
Window Type Relative Change

Γ Ψ+SD in accuracy

∞ 71.35 69.66 -2.37

20 59.56 62.46 5.04

15 51.96 55.68 7.16

10 42.94 46.66 8.66

5 33.85 37.03 9.39

0 25.88 28.61 10.55

Maximum gains due to the spectral differentiation process were

observed in band-limited noises such as car, benz and volvo. Fur-

ther, it was observed that gains were consistent, especially at lower

SNRs. Reduced accuracy in the clean condition, as highlighted be-

fore, was due to the recognition errors in consonants, especially plo-

sives. Vowels on the other hand showed increase in recognition ac-

curacy, even in the clean condition.

6. CONCLUSION AND FUTURE WORK

In this paper an asymmetric cochlear filter-bank was designed for ap-

plication in the FDLP framework. This asymmetric filter-bank (Ψ)

was shown to be suitable for application of spectral differentiation.

Parameters of this filter-bank (Ψ) were optimized for robustness to

additive noise distortions, with minimal effect on performance in

clean condition. This asymmetric filter-bank, Ψ, provides an aver-

age relative improvement of 8.04% in phoneme recognition accuracy

over the mel filter-bank (Γ).

Pole-order and envelope compression factor were shown to be

influential parameters in the FDLP extraction technique, in previous

studies for reverberant environments. Optimal values of these pa-

rameters have to be identified for the asymmetric filter bank, in the

additive noise condition. Further experiments are being conducted to

verify if the gains observed are consistent when combined language

models or in scenarios with multi-condition training.

The use of asymmetric filters and spectral differentiation brings

FDLP processing closer to cochlear processing in humans, hence

this representation is seen as an ideal candidate for operations such

as modulation filtering, which emulate cortical processing stage in

humans. Experiments on modulation filter-bank design using this

new representation are being conducted.
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