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ABSTRACT

We propose a feature enhancement algorithm to improve robust
automatic speech recognition (ASR). The algorithm estimates a
smoothed ideal ratio mask (IRM) in the Mel frequency domain
using deep neural networks and a set of time-frequency unit level
features that has previously been used to estimate the ideal binary
mask. The estimated IRM is used to filter out noise from a noisy
Mel spectrogram before performing cepstral feature extraction for
ASR. On the noisy subset of the Aurora-4 robust ASR corpus, the
proposed enhancement obtains a relative improvement of over 38%
in terms of word error rates using ASR models trained in clean
conditions, and an improvement of over 14% when the models are
trained using the multi-condition training data. In terms of instanta-
neous SNR estimation performance, the proposed system obtains a
mean absolute error of less than 4 dB in most frequency channels.

Index Terms— Computational Auditory Scene Analysis, in-
stantaneous SNR, noise robust ASR, Aurora-4

1. INTRODUCTION

Noise robust speech recognition is a widely studied research problem
with important practical applications [1]. Several methods aim to ex-
tract robust features like RASTA PLP [2] and AFE [3]; but merely
tuning feature extraction has achieved limited success. Therefore,
techniques like model adaptation and feature enhancement are com-
monly used. Adaptation techniques, like MLLR [4] and Vector Tay-
lor series (VTS) based adaptation [5, 6], try to modify the model
parameters to match the test conditions better. Such methods are
computationally expensive, and may additionally need adaptation
data. In contrast, feature enhancement techniques try to remove
noise from a given mixture without modifying the model parameters.
Such methods are, therefore, computationally more efficient. Exam-
ples of feature enhancement techniques include missing feature re-
construction [7], Wiener filtering [8], and VTS-based enhancement
[9].

A popular way to perform feature enhancement is by using com-
putational auditory scene analysis (CASA) based algorithms to per-
form speech separation prior to recognition. Inspired by the remark-
able robustness of human listeners, CASA aims to develop speech
separation algorithms motivated by the principles of auditory scene
analysis [10]. A main goal of CASA is to estimate the ideal binary
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mask (IBM) [11], which identifies each unit in a time-frequency (T-
F) representation of the noisy signal as speech dominant or noise
dominant. With the IBM as the computational goal, the task of sepa-
ration reduces to a binary classification problem. The IBM has been
used for performing feature enhancement (or noise suppression) in
ASR by either using the direct masking approach [12] or by perform-
ing reconstruction [7]. In direct masking, the IBM is used as a binary
gain function to attenuate the energy within the noise-dominant T-F
units. In reconstruction, the speech energy within the noise domi-
nant units is estimated using the information available in the speech
dominant units.

The performance of both the above methods depend largely on
the quality of IBM estimation. Supervised classification-based algo-
rithms have been used to perform the task of IBM estimation for
speech separation [13, 14]. Such algorithms extract features at the
T-F unit level, and perform classification using learning machines
like SVMs and deep neural networks (DNN). One of the goals of
this study is to evaluate performance of such algorithms on a robust
ASR task. In robust ASR, it has been noted in earlier studies that es-
timating the ideal ratio mask may result in better performance [15]1.
Therefore, we also study: 1) how can such supervised learning algo-
rithms be adapted to estimate the IRM and 2) the potential of such
algorithms in improving noise robust ASR performance.

The rest of the paper is organized as follows. In Section 2, we
discuss prior work related to IRM estimation. Section 3 provides the
system description. Evaluation results are presented in Section 4.
We conclude in Section 5.

2. PRIOR WORK

Soft masks have been used in several robust ASR studies [7, 16].
The values in a soft mask represent the probability of a T-F unit
being speech dominant, and are typically used in a missing data
framework to perform recognition. The masks are estimated either
by applying a sigmoid function to the estimated a priori signal-to-
noise-ratio (SNR) [16], or by using a Gaussian mixture model of
speech to directly predict the posterior probability [7]. In an alterna-
tive approach, Srinivasan et al. estimate the IRM by learning the re-
lationship between the binaural cues of interaural time and level dif-
ferences, and the instantaneous SNR [15]. Note that instantaneous
SNR is directly related to the IRM value at each T-F unit. They
use the estimated IRM to perform feature enhancement and report
improvements in ASR performance over using the estimated IBM.

1The IBM can be thought of as a binary approximation to the IRM.
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Recently, van Hout and Alwan propose to estimate a smoothed ratio
mask using noise power estimators and a median filter, which they
use to perform feature enhancement in the log Mel spectral domain
before cepstral transformation [17].

SNR estimation, which is a general task, has been widely studied
in the context of speech enhancement. Typical algorithms estimate
the a priori SNR which is used to obtain the gain at each T-F unit for
enhancement [8]. A supervised learning algorithm to estimate the in-
stantaneous SNR was proposed by Tchorz and Kollmeier [18]. Their
system uses amplitude modulation spectrograms (AMS) as features
and multi-layer perceptron (MLP) as the function estimator.

3. SYSTEM DESCRIPTION

The proposed system uses a supervised learning algorithm to esti-
mate the IRM. The following subsections describe how the desired
target is set, what features are used, and how the mapping function
is learned.

3.1. Target signal

Mathematically, the ideal ratio mask, which is closely related to the
Wiener gain, is defined as follows:

IRM(m, c) =
10(SNR(m,c)/10)

10(SNR(m,c)/10) + 1
,

and SNR(m, c) = 10 log10(x(m, c)/n(m, c)).

Here, x(m, c) and n(m, c) denote the instantaneous speech and
noise energy, respectively, at time frame m and frequency channel
c. SNR(m, c) denotes the instantaneous SNR in dB. Instead of
directly estimating the IRM, our system estimates the instantaneous
SNR transformed using a tunable sigmoid function:

d(m, c) =
1

1 + exp(−α(SNR(m, c)− β))
. (1)

d(m, c) denotes the desired target while training. α controls the
slope of the sigmoid, and β is the bias. By tuning α and β, we
can control the range of SNR to focus on while training the system.
In our experiments we set α to roughly have a 35 dB SNR span2

centered at β, which is set to -6 dB. β corresponds to the threshold
commonly used to define the IBMs [19]. The SNR to target mapping
based on these chosen values is shown in Fig. 1.

During testing, the output of the system is mapped back to the
corresponding IRM values so that they can be used as a filter to per-
form noise suppression.

3.2. Features

We perform mask estimation in the Mel spectral domain, which is a
commonly used front-end to perform feature enhancement for ASR.
To extract features, the pre-emphasized input signal is first filtered
using a 26-channel Mel filterbank that spans frequencies from 50 Hz
to 7 kHz. The filterbank is implemented using sixth order butter-
worth filters. The filter output in each channel is then used to extract
the following T-F unit level features: 13 dimensional RASTA filtered
PLP cepstral coefficients with delta and acceleration components, 31
dimensional Mel frequency cepstral coefficients (MFCC), 15 dimen-
sional AMS features, and 6 dimensional pitch-based features along

2We define SNR span as the difference between the instantaneous SNRs
corresponding to the desired target values of 0.95 and 0.05.
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Fig. 1. The instantaneous SNR mapping function that is used to set
the desired target during training.

with their time and frequency delta components. While calculating
these features the hop size is set to 10 msec; the frame size depends
on the feature type – 20 msec frames are used for RASTA PLPs,
MFCCs, and pitch-based features, and 32 msec frames are used for
AMS features (see [20] for detailed descriptions of how these fea-
tures are extracted). We use this group of features as it has been
found to work well for IBM estimation [20].

3.3. Supervised learning

Following the supervised IBM estimation algorithm proposed in
[21], we use deep neural networks to learn the function that maps
the extracted features to the desired target (see Eq. 1). We take a
two stage approach. In the first stage, 26 DNNs are trained, one for
each frequency channel, using the features described above. The
DNN training schedule includes an unsupervised pre-training phase
and a supervised back-propagation phase, each consisting of 100
epochs [22]. The cross-entropy learning criterion is used during
back-propagation. Each DNN has 103 input nodes corresponding to
the feature dimensionality, 2 hidden layers each with 200 nodes, and
an output layer with 1 node.

The DNNs learn the function using locally obtained features at
each T-F unit, and do not directly make use of the information avail-
able in the neighboring units. Therefore, in the second stage, we
learn MLPs with 1 hidden layer to smooth the output of the DNN.
The MLPs are also trained for each frequency channel. They use the
output of the DNNs in a neighborhood surrounding each T-F unit as
input, and are trained to re-estimate the same targets as the DNNs.
The neighborhood, which was chosen based on ASR performance
on a development set, consists of a window of 9 frequency channels
and 11 time-frames. The number of nodes in the hidden layer of the
MLPs is fixed to 100. Like in the first stage, they are trained for 100
epochs using the cross-entropy learning criterion.

4. RESULTS

4.1. Experimental setup

The proposed system is evaluated using the Aurora-4 dataset [23],
which is based on the Wall Street Journal corpus [24]. The DNNs
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and the MLPs are trained using the noisy utterances from the multi-
condition training set. These utterances were created by mixing
speech with 6 noise types at SNRs ranging from 10 dB to 20 dB.
Of the 2676 utterances in the set, 2100 sentences are used to train
the system and the rest are used for cross validation and early stop-
ping. The clean and noise signals comprising each mixture is used to
set the desired target for training using Eq. 1. For evaluating perfor-
mance, we use the reduced noisy test sets of the corpus. It consists
of 166 clean utterances mixed with the same 6 noise types at SNRs
ranging from 5 dB to 15 dB.

The ASR system is implemented using the HTK toolkit [25].
The recognition module consists of state tied, word-internal tri-
phones modeled as 3-state HMMs. The observation probability of
each state is modeled as a mixture of 16 diagonal Gaussians. The
standard bigram language model and the CMU pronunciation dic-
tionary are used during decoding. As features, we use 12th order
MFCCs along with their delta and acceleration components. The
features are mean and variance normalized at the utterance level to
improve robustness. During testing, the noisy signals are filtered
using the estimated IRM in the Mel spectral domain before cepstral
transformation.

4.2. Evaluation results

4.2.1. Instantaneous SNR estimation

We first present the instantaneous SNR estimation performance of
the proposed system. The proposed 2-stage system is compared with
the following alternatives: 1) a 1-stage system that directly uses the
output of the DNN without any smoothing, 2) a 1-stage system that
directly estimates the IRM rather than the targets as defined by Eq. 1
(IRM-direct), 3) a system similar to the one proposed by Tchorz
and Kollmeier [18] (TK-AMS). TK-AMS concatenates the AMS
features calculated at the T-F unit level to obtain a frame-level fea-
ture (dimensionality: 15×26=390). A single DNN is then trained
to simultaneously estimate the outputs corresponding to the 26 fre-
quency channels. The architecture of the DNN is the same as used
by the proposed system, except that the input and the output layers
now consist of 390 and 26 nodes, respectively. The output of each
of these systems is converted to decibels to evaluate performance.
The ground truth instantaneous SNR values and the estimates are
restricted to the range of -15 dB to 10 dB; any estimate out of this
range is rounded to these boundary values.

The mean absolute error averaged across the 6 noise conditions
is shown in Fig. 2. On average, the 1-stage system gives a mean
error of 3.0 dB. Smoothing the output further improves the average
error by 0.3 dB. Estimating the IRM directly worsens performance
by around 1 dB compared to the 2-stage system, which shows the
utility of using the sigmoid function to transform the SNRs. TK-
AMS produces an average error of 3.7 dB.

It is interesting to note that the average error for every frequency
channel is below 4 dB for the proposed 2-stage algorithm. It per-
forms worst in babble noise and airport noise conditions, where the
mean error across all channels is around 3 dB. As expected, it per-
forms the best in the relatively stationary car noise conditions with
an average error of 2.3 dB. It can be observed from the figure that
the performance of all algorithms drops at higher frequency chan-
nels. This is expected since the high frequency region contains more
unvoiced speech, which has noise-like characteristics, making it dif-
ficult to distinguish it from actual noise.
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Fig. 2. Instantaneous SNR estimation performance in the Mel spec-
tral domain. 26 frequency channels span frequencies from 50 Hz to
7 kHz.

4.2.2. ASR performance

We use both the clean and multi-condition (MC) training sets to train
two ASR systems. In clean conditions they produce a word error
rate (WER) of 8% and 10.4%, respectively. The performance of the
tested feature enhancement algorithms are shown in Table 1. The
baseline performance corresponds to recognizing noisy speech di-
rectly without any enhancement. This results in an average WER
of 29% when using models trained in clean conditions, and 19.3%
using MC training.

Apart from the systems described before, we also present re-
sults obtained using an IBM estimation algorithm (IBM-direct). The
IBM-direct system uses binary targets, instead of ratio targets as used
by the proposed algorithm, during training. The binary targets are
obtained by applying a threshold to the instantaneous SNR at -6 dB.
It uses DNNs trained similarly to the proposed 1-stage system (i.e.,
without any smoothing). The IBM-direct system is most similar to
the one proposed in [21], which has been shown to perform well for
speech separation. The direct masking approach is used to perform
feature enhancement when the estimated IBM is used.

As can be seen, using models trained in clean conditions, the
proposed 2-stage system obtains an average WER of 17.9%, 0.7
percentage points better than the 1-stage system and 3.6 percentage
points better than IBM-direct. Clearly, estimating the IRM seems
more appropriate for the task of ASR. Both 1-stage and 2-stage sys-
tems outperform IRM-direct and TK-AMS. It is worth emphasizing
that the 2-stage system obtains a large improvement of 11.1 percent-
age points when compared to the noisy baseline. The difference in
performance is not as dramatic when the ASR models are trained us-
ing the MC set. The 2-stage system obtains an improvement of 0.5
percentage points over the 1-stage system. The remaining systems
obtain similar WERs on average. Compared to the noisy baseline,
the 2-stage system obtains an improvement of 2.8 percentage points.

5. CONCLUSIONS

We have proposed a feature enhancement algorithm for improv-
ing noise robustness of ASR systems. The algorithm estimates
a smoothed ideal ratio mask in the Mel spectrogram domain using
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Table 1. Word error rates on the noisy subset of the Aurora4 corpus. The proposed systems are denoted as One-stage and Two-stage. RI
stands for relative improvement with respect the noisy baseline.

System Test set
Car Babble Restaurant Street Airport Train Average RI

Clean Training
Noisy 16.7 29.8 31.9 29.9 29.4 36.3 29.0 0%
IRM-direct 12.0 19.5 23.8 20.7 20.8 20.7 19.6 32.5%
TK-AMS 11.6 21.1 21.0 20.2 20.3 24.2 19.7 31.9%
IBM-direct 13.4 21.8 25.1 22.5 21.0 25.1 21.5 25.9%
One-stage 11.0 19.1 22.6 19.2 19.5 20.0 18.6 35.9%
Two-stage 10.7 19.2 21.7 18.0 18.9 18.7 17.9 38.4%

Multi-condition Training
Noisy 12.9 17.4 23.9 20.0 18.8 22.7 19.3 0%
IRM-direct 11.8 18.5 21.7 17.1 19.4 18.1 17.8 7.9%
TK-AMS 11.7 17.5 19.5 17.0 18.4 18.9 17.2 11.0%
IBM-direct 12.6 17.2 20.5 17.7 17.9 18.6 17.4 9.6%
One-stage 11.0 18.0 20.2 16.8 18.3 17.6 17.0 11.9%
Two-stage 11.4 16.8 19.6 16.4 18.2 16.8 16.5 14.3%

deep neural networks, which is used to filter out noise before cepstral
transformation. Large improvements were obtained on the Aurora-4
robust ASR task using the proposed system. It is also observed that
better ASR performance is obtained using the estimated ratio mask
compared to the estimated binary mask. We note that the noise types
used in the test set are seen during training. Therefore, an interesting
issue for future study is how well the system generalizes to unseen
conditions.
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