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ABSTRACT

This paper considers the application of discriminative manifold
learning approaches in feature analysis for automatic speech recog-
nition (ASR). The issue of manifold learning is addressed for feature
space dimensionality reduction in domains involving noise corrupted
speech. The locality preserving discriminant analysis (LPDA) ap-
proach to manifold learning is investigated. This class of techniques
exploits the assumption that there is a structural relationship among
data vectors which can be maintained by preserving the local rela-
tionships among the transformed data vectors. The paper presents a
procedure for reducing the impact of varying acoustic conditions on
manifold learning. Noise aware manifold learning (NAML) is de-
scribed as an approach for exploiting estimated background charac-
teristics to define the size of the local neighborhoods used for LPDA
feature space transformations. It is shown that NAML significantly
reduces the speech recognition WER in a noisy speech recognition
task over LPDA, particularly at low signal-to-noise ratios.
Index Terms: Locality preserving discriminant analysis, graph em-
bedding, dimensionality reduction, speech recognition

1. INTRODUCTION

Augmenting static features with dynamic spectral information has
long been an important aspect of acoustic feature extraction for au-
tomatic speech recognition (ASR). One of the widely accepted tech-
niques used for capturing this dynamic information is to combine
multiple consecutive static feature vectors to form high dimensional
super-vectors. These super vectors may represent on the order of
100 milliseconds of speech and have dimensionality as high as 200.
This representation, however, introduces two issues. The first is high
dimensionality of the super-vectors, and the second is high degree of
correlation between feature vector components. These issues have
inspired the use of feature space dimensionality reduction and dis-
criminant analysis approaches in ASR.

In previous work [1], a new approach was presented for feature
space transformation, termed ‘locality preserving discriminant anal-
ysis’ (LPDA) as applied to ASR. LPDA is a discriminative manifold
learning technique. It not only attempts to preserve the underlying
local sub-manifold based relationships of feature vectors but also
maximizes a criterion related to the separability between classes of
feature vectors. In [1], speech features derived from LPDA were re-
ported to produce significant gains in ASR performance compared
to features derived using other well-known feature space transfor-
mation techniques, such as linear discriminant analysis (LDA) [2]
and locality preserving projections (LPP) [3, 4]. LDA discrimi-
nates between classes of feature vectors, but it does not take into
account the local manifold based relationships of the data. LPP is
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an manifold based locality preservation technique, but it does not
consider the inter-class discriminant structure of the data. Another
example of discriminative feature space transformation techniques
is heteroscedastic linear discriminant analysis (HLDA) [5] that takes
into account heteroscedastic distribution of speech features in differ-
ent classes. While HLDA has in some cases demonstrated perfor-
mance improvements with respect to LDA, there is some debate as
to whether similar effects can be achieved by applying a semitied
covariance transform (STC) with LDA [6, 7].

This work addresses the issue of performance degradation of
manifold learning based feature space transformation approaches
when applied to noise corrupted speech. Noise aware manifold
learning (NAML) is presented as an approach which addresses the
interaction between acoustic noise conditions and the structure of
local neighborhoods used in manifold learning. The NAML frame-
work is motivated by the fact that the shape and size of the local
manifold structures are affected by the choice of the kernel scale
parameter. The selection of this parameter has a crucial effect on
the behavior of kernel, and consequently the performance of the fea-
tures [4, 8]. Since the neighborhood structure is also affected by the
presence of noise, there exists a significant interplay between the
Gaussian kernel scale factor and acoustic noise. This work presents
NAML as an effective way to apply manifold learning techniques to
varying acoustic environments in ASR.

The relationship of this paper to previous work includes the ap-
plication of manifold learning algorithms with some notion of dis-
criminative power in other domains [9, 10]. The goal of this work
is to exploit estimated background characteristics to select the size
of the local neighborhoods used for LPDA feature space transforma-
tions. The discriminative manifold learning LPDA is chosen as an
example manifold learning technique primarily because of the good
performance obtained using LPDA in previous work [1]. However,
the NAML framework can be extended to other manifold learning
algorithms.

The rest of this paper is structured as follows. An introduction to
LPDA is presented in Section 2. After describing the experimental
setup in Section 3, Section 4.1 motivates the need for an NAML ap-
proach by analyzing the effect of noise level on the optimal choice of
Gaussian kernel scale factor for manifold learning techniques. Noise
aware extension of LPDA is presented in Section 4.2. Section 5
presents further evidence suggesting the impact of noise on mani-
fold learning techniques. Finally, Section 6 concludes the paper.

2. LOCALITY PRESERVING DISCRIMINANT ANALYSIS

This section briefly introduces the LPDA formulation. Interested
readers are referred to [1, 9, 10] for a more detailed discussion.

A generic supervised feature space dimensionality reduction
problem can be defined as follows. Consider a training set of feature
vectors, X = {x1, · · ·xN} in Rd such that all the vectors in X are
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labeled as belonging to one of a set of classes c ∈ {c1, c2, · · · , cNc},
where Nc is the number of classes. The goal is to estimate the pa-
rameters of a projection matrix P ∈ Rd×m, withm ≤ d, to perform
a constrained transformation of the features from a d-dimensional
space onto an m-dimensional space.

LPDA attempts to maximize class separability, while preserv-
ing the local sub-manifold based relationships of the data vectors.
Following the generic framework of graph embedding [10], LPDA
acts by embedding the training dataset into two undirected weighted
graphs, namely, the intrinsic graph GI = {X,W I} and the penalty
graph GP = {X,W P }. Here X represents the nodes of the graphs,
which correspond to the vectors in the dataset. Therefore, X is same
for both the intrinsic and penalty graphs. W I and W P ∈ RN×N
are the intrinsic and penalty affinity edge-weight matrices, respec-
tively.

The affinity matrices characterize the statistical and geometri-
cal similarities of the data points. The elements of the matrices are
defined in terms of a Gaussian kernel as,

wintij =

{
exp

(
−||xi−xj ||2

ρ

)
;C(xi) = C(xj), I(xi,xj) = 1

0 ; Otherwise
(1)

and

wpenij =

{
exp

(
−||xi−xj ||2

ρ

)
;C(xi) 6= C(xj), I(xi,xj) = 1

0 ; Otherwise
(2)

where ρ is the kernel scale parameter. C(xi) denotes the class or
label of vector xi. The function I(xi,xj) indicates whether xi lies
in the near neighborhood of xj . In this work, a node xi is connected
to the 200 nearest neighbors belonging to the same class C(xi) in
the intrinsic graph, Gi. Similarly, xi is connected to the 200 closest
neighbors not belonging to the class C(xi) in the penalty graph, Gp.

A scatter measure for a graph G over the target space vectors
yi ∀i = 1, 2, · · · , N , where yi is obtained according to the projec-
tion yi = P Txi, can be defined by,

F (P ) =
∑
i 6=j

||yi − yj ||
2wij (3a)

= 2P TX(D − W )XTP (3b)

where D is a diagonal matrix whose elements correspond to the col-
umn sum of the affinity matrix W , i.e., Dii =

∑
j wij . Depending

on whether the goal is to preserve or eliminate the concerned graph
structure, an optimal projection matrix P can be obtained by mini-
mizing or maximizing the scatter in Eq. (3b).

In LPDA, the goal is to penalize the structural properties of
the penalty graph, while preserving the structure from the intrinsic
graph. To this end, the ratio of the penalty graph scatter measure to
that of the intrinsic graph is maximized to obtain the optimal projec-
tion matrix as,

argmax
P

tr
(
(X(DI −W I)X

TP )−1(P TX(DP −WP )X
TP )

)
(4)

where the subscripts I and P signify ‘intrinsic’ and ‘penalty’ graphs,
respectively [1,10]. Eq. (4) can be solved as a generalized eigenvalue
problem,

(X(DP −WP )X
T )pjlpda = λj(X(DI −W I)X

T )pjlpda (5)

where pjlpda is the jth column of the linear transformation matrix
P lpda ∈ Rd×m , and is the eigenvector associated with the jth
largest eigenvalue.

3. TASK DOMAIN AND SYSTEM CONFIGURATION

The ASR performance experiments in this work are conducted on
the European Telecommunications Standards Institute’s Aurora-2
speech in noise corpus. The training set consists of 8440 utterances
collected from 55 male and 55 female speakers. The test dataset
consists of a total of 4004 utterances artificially corrupted by three
different noise types (subway, exhibition hall, and car) at SNRs rang-
ing from 5 to 20 dB, and clean speech. The corpus was created by
adding noise from multiple environments to connected digit utter-
ances spoken in a quiet environment. As a result, the corpus repre-
sents a simulation of a speech in noise task, and one must be careful
about generalizing these results to the wide range of actual speech in
noise tasks.

The baseline features are configured as 39-dimensional Mel-
frequency cepstrum coefficients (MFCC), consisting of 12 static co-
efficients, normalized log energy, and augmented by ∆-cepstrum,
and ∆∆-acceleration. The transformations, LDA, LPP and LPDA,
are estimated using 117 dimensional super-vectors obtained by con-
catenating 9 vectors of MFCC augmented with log energy. For LDA
and LPDA, classes are defined as the states of the continuous density
hidden Markov models (CDHMM). The resultant projection matrix
P is then used to perform discriminant feature space transforma-
tions on the 117-dimensional training and test vectors and project
the features to a 39 dimensional space. During affinity calculations,
a neighborhood size of k = ki = kp = 200 is taken for all the
experiments.

The ASR system is configured using whole word CDHMM
models with 16 states per word-model, plus 3 states for the silence
model, and 1 state for the short pause model. There are 11 word-
based CDHMM models, and a total of 180 states. Each state is mod-
eled by a mixture of 3 Gaussians. STC transformations are applied
prior to recognition to account for the correlation introduced to the
transformed features by the LPDA, LPP and LDA projections, as de-
scribed in [1, 6]. Finally, the ASR performance is reported in terms
of %-word error rate (WER).

4. NOISE AWARE MANIFOLD LEARNING

This section presents noise aware manifold learning as applied to
the LPDA approach described in Section 2. LPDA is selected as an
example manifold learning technique primarily because of the good
performance obtained using LPDA in previous work [1]. The need
for a noise aware approach is motivated in Section 4.1 by quantify-
ing the relationship between the Gaussian kernel size and the acous-
tic noise conditions. Noise aware LPDA (N-LPDA) is presented in
Section 4.2 as an automatic procedure for choosing the kernel scale
factor based on the estimated SNR level for various noise conditions.

4.1. Importance of the Gaussian kernel scale factor

The Gaussian kernel scale factor, ρ in Eq. (1) and (2), governs the
data relationships along the manifold, and in-turn plays an important
role in the performance of the manifold learning algorithms [4, 8].
Most often this parameter is heuristically tuned to the given dataset.
Too large a scale factor would tend to flatten the Gaussian kernel
leading to a near-linear behavior, whereas a too small value would
lack sufficient smoothing of the manifold, thus resulting in a kernel
highly sensitive to noise. These claims are supported by experimen-
tal results presented in this section. For these experiments a multi-
noise mixed training dataset was used to minimize the environmental
mismatch between the training and testing conditions.
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Table 1 demonstrates the dependence of LPDA approach on ρ
values. Though a number of ρ values were investigated, for brevity
ASR performance results using multi-noise mixed CDHMM training
on the LPDA transformed features corresponding to two different
values of ρ, ρ1 = 800, ρ2 = 1000, are given for three different
noise types (Sub.=subway, Exh.=exhibition hall, and car). The next
five columns of the table display the ASR %-WER performance for
five different SNR levels (clean, 20 dB, 15 dB, 10 dB, and 5 dB).

Table 1. Comparison of LPDA ASR performance in terms of %-
WER for two different values of ρ, viz., ρ1 = 800, ρ2 = 1000. The
best of the two cases have been highlighted in bold.

Noise ρ Clean 20 dB 15 dB 10 dB 5 dB

Sub. 800 1.69 2.27 3.65 6.02 13.11
1000 1.83 2.43 3.29 5.25 11.82

Exh. 800 1.08 2.56 3.61 6.79 16.17
1000 1.38 2.56 3.72 6.08 14.04

Car 800 1.73 2.74 3.40 6.83 15.99
1000 2.19 2.27 3.02 5.04 15.33

It can be observed from the results in Table 1 that ρ = 800 gives
better performance in case of clean speech compared to ρ = 1000,
however, performance falls faster as noise increases. Eventually ρ =
1000 produces better performance for high noise conditions. This
trend is visible for all the noise types.

To conclude, an important finding that can be derived form these
results is that the optimal value of the scale parameter is heavily in-
fluenced by the level of noise corruption in speech. Such dependence
of the optimal choice of kernel scale factor on SNR level can be han-
dled by multiple scale factors, each specific to a noise condition. An
automatic scheme to achieve this is discussed next.

4.2. Noise aware LPDA

A noise aware LPDA scheme, which can automatically choose a
noise-matched LPDA transformation for a given noise condition,
is described as follows. First, a number of projection matrices are
trained based on different values of ρ. Second, a heuristic technique,
like cross-validation, is used to associate an optimal value of ρ – and
hence a specific LPDA projection – to each SNR level of the data
based on ASR performance. Note that an intermediate step of esti-
mating the SNRs of the speech utterances is involved here. Recent
research has produced a number of highly accurate SNR detection
algorithms in speech domain [11, 12]. This work utilized a hybrid
SNR detector based on the two algorithms [11, 12] to achieve av-
erage SNR detection accuracy of 85%. This SNR detection setup
introduces negligible computational overhead, and does not lead to
add much latency to the process. Then, separate CDHMM models
are trained from the features obtained by using these different pro-
jection matrices. During testing, SNR is estimated for each testing
utterance, followed by feature space transformation using the opti-
mal projection matrix associated with the corresponding SNR level,
and finally the corresponding model is used for recognition.

In this work, five different ρ’s were chosen
{800, 800|900, 900, 1000, 1000|3000} based on ASR perfor-
mance from a cross-validation experiment to train N-LPDA
transformations. Here, the values in the format ‘a|b’ refer to the
two different scaling factors used for the intrinsic and penalty
graph kernels, respectively. The results comparing performance of
N-LPDA with that of three other LPDA transformations for different
ρ values are shown in Table 2. Three separate tables are presented
for three different noise types (Sub.=subway, Exh.=exhibition hall,

and car). For each LPDA technique, ASR WER result are given
for four different noise levels ranging from 20 to 5 db SNR for
each noise type. The last column of the table shows ASR WER
performance averaged over the four SNR levels.

By comparing the average ASR WER in the last column of Ta-
ble 2 for different LPDA techniques in different noise types, a clear
observation can be drawn that N-LPDA gives improved average ASR
performance compared to any single ρ choice. A close inspection of
ASR WER for different SNR levels shows that N-LPDA provides
improved overall performance in most cases. Thus, it is safe to say
that the N-LPDA scheme reduces the dependency of neighborhood
size on noise level for manifold learning schemes. It should be noted
that though this work has focused on characterizing the effect of
noise level (SNR) on LPDA and related algorithms’ dependence of
the optimal ρ choice, similar dependence is also observed for differ-
ent noise types.

Table 2. ASR %-WER for mixed noise training and noisy testing on
Aurora-2 speech corpus for LPDA technique with different ρ values.
The best performance has been highlighted for each noise condition.

Noise LPDA (ρ) SNR (dB)

20 15 10 5 Avg.

Sub. 800 2.27 3.65 6.02 13.11 6,26
1000 2.43 3.29 5.25 11.82 5.70
1000|3000 2.18 3.29 5.28 11.73 5.62
N-LPDA 2.18 3.25 5.25 11.44 5.53

Exh. 800 2.56 3.61 6.79 16.17 7.28
1000 2.56 3.72 6.08 14.04 6.60
1000|3000 2.22 3.64 6.66 13.85 6.59
N-LPDA 2.28 3.36 6.08 13.85 6.39

Car 800 2.74 3.40 6.83 15.99 7.24
1000 2.27 3.02 5.04 15.33 6.42
1000|3000 2.30 2.77 5.19 12.73 5.75
N-LPDA 2.36 2.92 5.04 12.60 5.74

To further demonstrate the effectiveness of N-LPDA, another
set of experiments are performed where the ASR WER performance
of N-LPDA and LPDA is compared to other well know feature
space transformation techniques, namely linear discriminant anal-
ysis (LDA) and locality preserving projections (LPP). The results
for this experiment are compared in Table 3 for the various noise
conditions as described earlier. For each noise type, ASR WER are
given for four different feature types, namely MFCC, LDA, LPP and
N-LPDA (noise aware LPDA). It is apparent from the results in Ta-
ble 3 that noise aware LPDA produces improved ASR performance
compared to other feature extraction techniques for most noise con-
ditions.

5. FURTHER EVIDENCE CHARACTERIZING THE
IMPACT OF NOISE ON MANIFOLD LEARNING

The purpose of this section is to demonstrate the impact of mis-
matched environmental conditions on the LPDA manifold learning
approach for estimating ASR feature space transformations. It is
argued in Section 1 that manifold learning techniques benefit from
the assumption that there is a structural relationship amongst data
vectors which can be maintained by preserving the local relation-
ships among the transformed data vectors. This suggests that if the
presence of noise blurs these local relationships, the effectiveness of
these techniques will be diminished. This phenomenon is examined
under highly mismatched acoustic conditions by estimating LPDA
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Table 3. ASR %-WER for mixed noise training and noisy testing
on Aurora-2 speech corpus for LDA, LPP and N-LPDA. The best
performance has been highlighted for each noise condition.

Noise Feat. SNR (dB)

Clean 20 15 10 5

Sub. MFCC 1.76 2.99 4.0 6.21 11.89
LDA 1.82 2.25 2.93 5.29 12.32
LPP 1.66 2.33 3.50 5.71 13.26
N-LPDA 1.44 2.18 3.25 5.25 11.84

Exh. MFCC 1.89 3.34 3.83 6.64 12.72
LDA 1.83 2.63 3.37 6.67 14.29
LPP 1.76 2.56 4.23 8.55 16.91
N-LPDA 1.14 2.38 3.36 6.08 13.85

Car MFCC 1.99 2.77 3.36 5.45 12.31
LDA 2.29 2.83 3.45 5.69 15.92
LPP 1.88 2.71 3.61 6.08 14.97
N-LPDA 1.67 2.56 2.92 5.04 13.60

transforms and training CDHMM models under clean conditions and
evaluating ASR WER under a number of noisy conditions.

There are two observations made in this section to support the
hypothesis that environmental mismatch may affect manifold learn-
ing techniques to a greater extent than other feature types, for ex-
ample, unaltered MFCC features. First, the effect of noise on ASR
WER is evaluated when both MFCC features and LPDA features
are applied to the speech in noise task described in Section 3. It
is observed that the WER is far higher for the LPDA transformed
features than that observed when no feature space transformation is
performed. Second, the effects of noise are measured again after
transforming the HMM covariance matrices to reduce the acoustic
model mismatch with respect to the noisy test data. Surprisingly, it
is found that, after transforming the model parameters, the gain in
ASR performance observed for the LPDA transformed features is
significantly higher than the that for the MFCC features.

The experimental results supporting these observations are dis-
played in Table 4. The table contains ASR WERs for test condi-
tions corresponding to a range of SNRs in the subway noise condi-
tion. The two major rows in Table 4 represent the two different fea-
tures being evaluated, namely untransformed MFCC features and the
LPDA transformed features. For each feature set, the percent WER
is displayed with respect to SNR level when no acoustic adaptation is
performed, referred to in Table 4 as “None”, and when unsupervised
regression based covariance adaptation is performed on the HMM
model during recognition, referred to in the table as “Cov.”.

It is clear from observing the “None” labeled rows of Table 4
that there is a significant increase in WER for both the untransformed
and LPDA transformed features as the testing conditions become in-
creasingly mismatched with respect to the clean training conditions.
However, it is also clear that the increase in WER is far greater for the
case of the LPDA features. This suggests that imposing the structural
constraints associated with manifold learning is actually increasing
the confusability of the data when corrupted by additive noise.

It is well known that the presence of noise introduces distortions
in the covariance structure of the data [13]. These distortions re-
sult in changes in the probability densities of noisy speech features
resulting in a mismatch with respect to model distributions trained
under clean conditions. For the particular case of manifold learning,
it is also true that the unseen test features may not obey the structure
of the manifold learned from clean training features during LPDA
estimation. This results in a higher degradation in ASR performance
when manifold learning techniques are employed for feature space
transformation.

Table 4. ASR %-WER for clean training and subway noise testing
on Aurora-2 speech corpus for MFCC, LPP and LPDA features, with
and without environmental compensation.

Features Adapt. 20 dB 15 dB 10 dB 5 dB

MFCC None 2.52 6.97 24.01 54.19
Cov. 2.67 5.59 16.49 44.83

LPDA None 7.80 18.94 40.71 61.20
Cov. 1.96 4.30 13.75 39.89

These observations concerning the impact of noise on the co-
variance of the data and the impact of the mismatched covariance
on the assumed underlying manifold structure of the data suggests
that some form of environmental compensation should reduce the
effects of noise on the LPDA transformed features. The rows of
Table 4 labeled as having “Cov.” adaptation display the WERs
obtained when applying unsupervised regression based covariance
adaptation to transforming Gaussian mixture covariance matrices in
the CDHMM model. A multiple pass adaptation scenario is used
where maximum likelihood linear regression (MLLR) based covari-
ance transforms were estimated from all test utterances correspond-
ing to a given noise level [14]. While this scenario is not consistent
with the scenario used to obtain the “no adaptation” results shown
in Table 4, it serves to demonstrate the added impact mismatched
conditions have on the LPDA manifold learning approach.

It is clear from the “Cov.” results in the table that WERs for both
LPDA transformed and untransformed features are significantly re-
duced at almost all SNR levels. Part of this reduction in both cases
is due to the fact that all utterances from a given SNR level are used
to estimate the regression based adaptation matrix. Note that this
is an expected and well known phenomenon. However, the WER
reductions for the case of LPDA transformed features are remark-
able. In fact, while LPDA WERs are considerably higher than the
WERs for the untransformed features with uncompensated models,
the LPDA WERs are considerably lower than those obtained for the
untransformed features when covariance normalization is applied.

Thus, it can be concluded that the direct impact of noise on the
manifold learning procedure described in Section 2 occurs through
distortions in the local neighborhoods for the manifold learning al-
gorithm. These local neighborhoods are defined by the affinity ma-
trices and the associated Gaussian kernels. The N-LPDA approach
presented in Section 4 directly deals with this issues by consider-
ing the relationship between the size of the Gaussian kernels and the
noise SNR levels.

6. CONCLUSION

This paper has investigated the effect of acoustic noise conditions
on manifold learning approaches for feature space transformations
in CDHMM based ASR. It was found that the structural constraints
associated with manifold learning approaches result in transformed
features that are more sensitive to mismatch in acoustic conditions
than untransformed MFCC features. It was also shown that environ-
ment dependent performance degradation can be traced to the choice
of the size of the local neighborhood used for defining local affinity
matrices in manifold learning. These observations led to a multi-
model approach for improving the robustness of manifold learning
based feature space transformations, referred to here as noise aware
manifold learning (NAML). This involves automatic selection from
a set of noise-matched LPDA transformations to find a transform that
best matches the estimated noise conditions associated with a given
utterance. The approach was shown to provide reduced WER across
a range of acoustic conditions with respect to LDA and LPP based
feature space transformations.
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