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ABSTRACT

This study proposes an effective model-based feature com-

pensation method for robust speech recognition in back-

ground noise conditions. In the proposed scheme, an acous-

tic model with a phonetically constrained structure is em-

ployed for the Parallel Combined Gaussian Mixture Model

(PCGMM [1]) based feature compensation method. The

structure of the acoustic model includes a collection of con-

text independent phone models. A phonetically constrained

prior probability is formulated by integrating transition prob-

ability of phone models into the reconstruction procedure.

Experimental results show that the PCGMM-based feature

compensation employing the proposed phonetically con-

strained structure of acoustic model consistently outperforms

the case of employing the conventional Gaussian mixture

model. This demonstrates that the proposed configuration of

the acoustic model is effective at improving the intelligibil-

ity of the speech reconstructed by the feature compensation

method for speech recognition under diverse background

noise conditions.

Index Terms— feature compensation, PCGMM, acous-

tic model, phonetically constrained structure, robust speech

recognition

1. INTRODUCTION

The presence of background noise generates acoustic mis-

match between training and operating conditions in actual

speech recognition systems, which is one primary factor

severely degrading recognition performance. To minimize

this mismatch, extensive research has been conducted in re-

cent decades, which includes many types of speech/feature

enhancement methods such as Spectral Subtraction, Cep-

stral Mean Normalization (CMN), and a variety of feature

compensation schemes. Various model adaptation techniques

have been successfully employed such as the Maximum A
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Posteriori (MAP), Maximum Likelihood Linear Regression

(MLLR), and Parallel Model Combination (PMC) [2]-[4].

This study focuses on a feature compensation method em-

ploying an acoustic model for speech feature space which is

usually estimated as a Gaussian Mixture Model (GMM). Mul-

tivariate Gaussian-Based Cepstral Normalization (RATZ),

Vector Taylor Series (VTS) [5][6], and Stereo-based Piece-

wise Linear Compensation for Environments (SPLICE) [7]

algorithms can be classified into this GMM-based feature

compensation family, and our previous work presented in [1]

is also based on the GMM for the acoustic model.

In this paper, we propose to improve the GMM-based

feature compensation method by leveraging phonetic knowl-

edge. The proposed method utilizes a collection of phone

models instead of the general speech GMM (i.e., Univer-

sal Background Model (UBM) used for speaker recognition

technique). It also integrates transition probability of the

phone models which defines statistical connectivity among

the phone models. A phonetically constrained prior proba-

bility of each phone model is calculated for each speech frame

in the proposed algorithm. We believe that such a constrained

structure of the acoustic model could represent phonetic dy-

namics of speech utterance and it would be more effective at

improving the intelligibility of the reconstructed speech, com-

pared to the conventional GMM-based method. Our previ-

ously proposed Parallel Combined GMM (PCGMM) feature

compensation scheme is employed as a baseline framework

in this work [1].

This paper is organized as follows. We first review the

PCGMM-based feature compensation method as a framework

for this study in Sec. 2. Sec. 3 presents the proposed ap-

proach employing a phonetically constrained acoustic model.

Representative experimental procedures and their results are

presented and discussed in Sec. 4. Finally, in Sec. 5 we sum-

marize the main conclusions of our work.

2. PCGMM-BASED FEATURE COMPENSATION

In the PCGMM-based method [1], the parameters of the

noise-corrupted speech model {ωk,µy,k,Σy,k} are obtained
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Fig. 1. Block diagram of the PCGMM-based feature compen-

sation method [1].

through a model combination procedure using clean speech

and noise models independently [4]. The clean speech model

{ωk,µx,k,Σx,k} consists of K Gaussian components, and

the noise model is estimated with a single Gaussian pdf

{µ
n
,Σn} both in the cepstral domain. The noise-corrupted

speech model is obtained as,

{ωk,µy,k,Σy,k} = F [{ωk,µx,k,Σx,k}, {µn
,Σn}], (1)

where F [·] denotes a function representing the model combi-

nation, and the same weight parameter ωk is just used as in

the clean speech model.

A constant bias transformation of the mean parameters of

the clean speech model is assumed in the cepstral domain un-

der the additive noise environment, which is the assumption

generally taken by other data-driven methods [5] as follows,

µ
y,k = µ

x,k + rk, (2)

where the bias term rk is used for reconstruction of the in-

put speech. The bias term is estimated by Eq. (2), once the

mean parameters of the clean speech model and correspond-

ing noise-corrupted speech model are obtained. The Mini-

mum Mean Squared Error (MMSE) estimation equation for

reconstruction of the clean speech is approximated as follows

[5][1],

x̂MMSE =

∫

X

xp(x|y)dx ∼= y −
K∑

k=1

rk p(k|y). (3)

The posterior probability p(k|y) is given by,

p(k|y) =
ωkp(y|k)∑K

k=1
ωkp(y|k)

, (4)

where p(y|k) = p(y|µ
y,k,Σy,k). Fig. 1 presents the block

diagram of the PCGMM-based feature compensation as pre-

sented in this section.

3. PCGMM SCHEME EMPLOYING ACOUSTIC

MODEL WITH PHONETICALLY CONSTRAINED

STRUCTURE

As a first step, context independent (CI) phone models are

obtained from a clean speech training database. The ith phone

model is represented as a GMM (i.e., an HMM with a single

state) which consists of K Gaussian components as follows:

p(x|i) =
K∑

k=1

ωi,kN (x;µ
x,i,k,Σx,i,k). (5)

From the same training database, a prior probability of each

model p(i) and a model transition probability p(i|j) are also

obtained. The model transition probability p(i|j) represents a

probability of transition from a phone model j at a previous

time frame t− 1, to a model i at the current frame t.

Using the model combination procedure in the PCGMM

method, noise-corrupted phone models are obtained for all

corresponding clean phone models as follows:

p(y|i) =
K∑

k=1

ωi,kN (y;µ
y,i,k,Σy,i,k), (6)

where {µ
y,i,k,Σy,i,k} are generated by combining the clean

model {µ
x,i,k,Σx,i,k} with a noise model. If all phone mod-

els are fully connected with an equal model transition proba-

bility, Eq. (3) can be formulated as,

x̂MMSE = y −
I∑

i=1

p(i)

K∑
k=1

ri,k p(i, k|y), (7)

where I denotes the number of phone models. Here, the pos-

terior probability p(i, k|y) is given by,

p(i, k|y) =
ωi,kp(y|i, k)∑K

k=1
ωi,kp(y|i, k)

, (8)

where p(y|i, k) = p(y|µ
y,i,k,Σy,i,k).

In the proposed scheme, we employ an acoustic model

which is phonetically constrained by integrating the model

transition probability p(i|j). Here, we introduce qt(i) which

is formulated by,

qt(i) = p(i)

I∑
j=1

p(j)p(yt−1|j)p(i|j). (9)

Fig. 2 illustrates the calculation of qt(i). The phonetically

constrained prior probability pct(i) at time t is calculated by

normalizing qt(i) as follows:

pct(i) =
qt(i)∑I

i=1
qt(i)

. (10)

Finally, the reconstruction equation is reformulated by re-

placing p(i) with the proposed phonetically constrained prior

probability pct(i):

x̂MMSE = y −
I∑

i=1

pct(i)
K∑

k=1

ri,k p(i, k|y). (11)
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Fig. 2. Calculation of qt(i) for the phonetically constrained

prior probability.

Fig. 3. Phonetically constrained structure of acoustic model.

Fig. 3 illustrates an example structure of the acoustic model

presented in this section. Here it is assumed that three phone

models and two Gaussian pdf per a model. The conventional

GMM with six Gaussian components is compared. We be-

lieve that this phonetically constrained structure of the acous-

tic model for feature compensation will be more effective at

improving intelligibility of reconstructed speech.

4. EXPERIMENTAL RESULTS

4.1. Experimental Setup and Baseline Performance

The TIMIT speech corpus was used for performance evalua-

tion of the proposed method. A total of 4.1 hours of speech

(462 speakers, 4,620 utterances) were used for training, and

1.5 hours of data (168 speakers, 1,680 utterances) were used

for test. The training and the test sets do not overlap each

other in speakers or sentences. The data was down-sampled

to 8kHz, so that each speech sample contains 4kHz full-band

frequency. In order to evaluate the performance under vari-

Table 1. Recognition performance of baseline system and

conventional methods for car noise and speech babble condi-

tions (WER, %).

Car Noise 5 dB 10 dB 15 dB Avg.

No Processing 90.72 62.36 32.85 61.98

SS+CMN 66.17 38.27 21.43 41.96

VTS 75.08 39.17 19.98 44.74

ETSI AFE 48.20 29.88 20.24 32.77

Speech Babble 5 dB 10 dB 15 dB Avg.

No Processing 81.75 51.34 26.26 53.12

SS+CMN 68.71 37.26 19.87 41.95

VTS 65.15 33.04 17.46 38.55

ETSI AFE 50.68 30.72 19.89 33.76

ous types of background noise conditions, noise corrupted test

sets were generated by combining clean speech samples with

car noise and speech babble audio samples. The car noise and

speech babble samples were obtained from NOISEX92 [8].

Each test set consists of 1,680 utterances at three different

SNRs: 5, 10, and 15 dB.

We employed SPHINX3 [9] as the HMM-based speech

recognizer to obtain recognition accuracy in background

noise conditions. Each HMM represents a tri-phone which

consists of 3 states with an 8-component GMM per state,

which is tied with 1138 states. The task has 6233 vocabu-

lary words, and the trigram language model is adapted on

the TIMIT database using a Broadcast News language model

as an initial model. A conventional MFCC (Mel-Frequency

Cepstral Coefficient) feature front-end is employed in the

experiment, which was suggested by the European Telecom-

munication Standards Institute (ETSI) [10]. An analysis

window of 25msec is used with a 10msec skip rate for 8-kHz

speech data. The computed 23 Mel-filterbank outputs are

transformed to 13 cepstrum coefficients including c0 (i.e.,

c0-c12). The recognition system has 8.05 % Word Error Rate

(WER) for clean speech conditions.

Performance of the baseline system (no processing) was

examined with comparison to several existing pre-processing

algorithms in terms of speech recognition performance. Spec-

tral Subtraction (SS) [11] combined with Cepstral Mean Nor-

malization (CMN) was selected as one of the conventional

algorithms. These represent some of the most commonly

used techniques for additive noise suppression and removal of

channel distortion respectively. We also evaluated the Vector

Taylor Series (VTS) algorithm for performance comparison

[5]. The Advanced Front-End (AFE) algorithm developed

by ETSI was also evaluated as one of the state-of-the-art

methods, which contains an iterative Wiener filter and blind

equalization [12]. Table 1 demonstrates speech recognition

performance (WER) of the baseline system and conventional

algorithms on car noise and speech babble conditions. It

shows that the ETSI AFE provides the greatest improvement

in WER.
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Table 2. Performance comparison of the PCGMM method

employing different types of acoustic models (WER, %).

Car Noise 5 dB 10 dB 15 dB Avg.

GMM with K = 368 52.87 31.33 17.36 33.85

Equal Transition 54.87 32.74 17.40 35.00

Phone Constrained 52.67 30.47 17.34 33.49

(Relative Improve) (+0.38) (+2.74) (+0.12) (+1.08)

Speech Babble 5 dB 10 dB 15 dB Avg.

GMM with K = 368 51.99 26.84 15.94 31.59

Equal Transition 51.46 26.68 15.70 31.28

Phone Constrained 50.74 25.95 14.79 30.49

(Relative Improve) (+2.40) (+3.32) (+7.21) (+4.31)

4.2. Performance Evaluation of PCGMM Employing the

Proposed Phonetically Constrained Structure of Acoustic

Model

Next, Table 2 shows performance comparisons of different

acoustic models which are employed by the PCGMM-based

feature compensation method. For the proposed method, we

obtained context independent (CI) phone models by training

over the clean speech database. The CI phone models consists

of 46 phones including a silence model, and each model is

represented as a Gaussian mixture model (i.e., an HMM with

a single state) which consists of 8 components, resulting in

368 Gaussian components in total. For a performance com-

parison, the baseline system employs a conventional GMM

for the PCGMM method, which consists of 368 Gaussian

components (i.e., “GMM with K = 368” in Table 2). We also

evaluated the performance of the PCGMM method employ-

ing the identical CI phone models which are fully connected

with an equal transition probability (i.e., “Equal Transition”).

The scheme employing the “Equal Transition” phone models

is implemented by Eq. (7).

By employing the phonetically constrained acoustic

model for the PCGMM method, we obtained consistently

improved performance compared to both the baseline (i.e.,

“GMM with K = 368”) and equal transition model systems.

We obtained +1.08% and +4.31% average relative improve-

ments in WER compared to the baseline PCGMM system for

car noise and speech babble conditions respectively. These

results demonstrate that the proposed configuration of the

acoustic model is effective at improving the intelligibility of

the speech reconstructed by the feature compensation method

for speech recognition under diverse background noise con-

ditions.

5. RELATION TO PRIOR WORK

The existing model-based feature compensation methods

mostly employ Gaussian mixture mode (GMM) as their

acoustic model [5][6][7][1]. The proposed work in this paper

employs an acoustic model with a phonetically constrained

structure. The structure of the acoustic model consists of a

collection of phone models. A phonetically constrained prior

probability is formulated by integrating transition probability

of phone models into the reconstruction procedure.

6. CONCLUSIONS

This study has proposed an effective model-based feature

compensation method for robust speech recognition in back-

ground noise conditions. In the proposed scheme, an acous-

tic model with a phonetically constrained structure was

formulated for the PCGMM-based feature compensation

method. Context independent phone models and model tran-

sition probability parameters were obtained from a training

database. The model transition probability was integrated

into the reconstruction formulation for the feature compen-

sation method. Experimental results demonstrated that the

proposed configuration of the acoustic model is effective

at improving the intelligibility of the speech reconstructed

by the feature compensation method for speech recognition

under background noise conditions.
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