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ABSTRACT 
 

Previous work has demonstrated that spectro-temporal Gabor 
features reduced word error rates for automatic speech recognition 
under noisy conditions. However, the features based on mel spectra 
were easily corrupted in the presence of noise or channel 
distortion. We have exploited an algorithm for power normalized 
cepstral coefficients (PNCCs) to generate a more robust spectro-
temporal representation. We refer to it as power normalized 
spectrum (PNS), and to the corresponding output processed by 
Gabor filters and MLP nonlinear weighting as PNS-Gabor. We 
show that the proposed feature outperforms state-of-the-art noise-
robust features, ETSI-AFE and PNCC for both Aurora2 and a 
noisy version of the Wall Street Jounal (WSJ) corpus. A 
comparison of the individual processing steps of mel spectra and 
PNS shows that power bias subtraction is the most important 
aspect of PNS-Gabor features to provide an improvement over 
Mel-Gabor features. The result indicates that Gabor processing 
compensates the limitation of PNCC for channels with frequency-
shift characteristic. Overall, PNS-Gabor features decrease the word 
error rate by 32% relative to MFCC and 13% relative to PNCC in 
Aurora2. For noisy WSJ, they decrease the word error rate by 
30.9% relative to MFCC and 24.7% relative to PNCC.  
 

Index Terms— spectro-temporal features, robust speech 
recognition, large vocabulary speech recognizion 
 

1. INTRODUCTION AND RELATED WORK 
 
Although state-of-the-art automatic speech recognition (ASR) 
systems can achieve high performance in clean environments, 
performance degrades in the presence of noise. Several existing 
methods focus on compensating the difference between clean 
speech and noisy speech in different aspects such as model-based1 
[1][2] or feature-based approaches [3][4][5]. Unlike ASR systems, 
human listeners rely on attention-driven (cognitive) selection of a 
specific speaker, e.g., in a high-noise cocktail party situation, 
which results in high recognition scores for human listeners, and 
which inspires researchers to find more robust features based on  
 

                                                
1 Note that model-based approaches can be applied in addition to 
the feature-oriented methods described here or elsewhere. 
 
 

  

 
Figure 1: Comparsion of mel spectrum and PN spectrum 

 
biological models of the auditory system. Over the last decade, a 
number of physiological experiments on different mammalian 
species have revealed that neurons  in the primary auditory cortex 
are sensitive to particular spectro-temporal patterns referred to as 
spectro-temporal receptive fields (STRFs) [6]. Based on this 
evidence, spectro-temporal features, which serve as a model for 
STRFs, have been applied to ASR. Several studies have 
successfully incorporated Gabor function approximations into ASR 
[7][8][9]. In general, these approaches define a series of spectral, 
temporal, and spectro-temporal modulation filters that can be seen 
as very roughly modeling neuron firing patterns for particular 
spectro-temporal signal components. Purely temporal features such 
as TRAPS [10] and HATS [11] can be regarded as special cases of 
spectro-temporal features. Gabor filters have also been used for 
speech and nonspeech discrimination [12][13]. While a number of 
experiments have shown the efficiency of using spectro-temporal 
filters for ASR, mel spectra may not be the optimal time-frequency 
representation to be filtered for this purpose.  
       Shao [14] suggests that a gammatone filter bank based on the 
auditory periphery model is robust for noisy speech recognition. In 
[4], Kim and Stern propose the power normalized cepstral 
coefficient (PNCC) algorithm using gammatone filters followed by 
power bias subtraction and power nonlinearity compression. PNCC 
is relatively insensitive to stationary noise. Therefore, spectra 
generated by the PNCC algorithm could be a good choice as the 
representation to be filtered. We refer to the spectra generated from 
PNCC as the power normalized spectrum  (PNS). Here we present 
a series of ASR experiments comparing mel spectra to power 
normalized spectra when processed with Gabor filters. 
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       Due to the use of a large number of Gabor filters, our feature 
dimension is very high, which can create difficulties in current 
systems. Marki and Stylianous [15] employ a variety methods for 
dimensionality reduction. Zhao and Morgan [16] divide features 
into several streams so that each represents a patch of information 
in the spectro-temporal field. In this paper, we employ tandem 
MLP-HMM acoustic models [17] to integrate the features for 
speech recognition. The PNS filtered by Gabor filters and MLP 
processing are referred to as PNS-Gabor features. 
The experiments presented in this paper show that PNS-Gabor plus 
MFCC are more robust than ETSI-AFE, PNCC and Mel-Gabor 
plus MFCC for both Aurora2 and a noisy version of WSJ. Further, 
we perform an analysis of the importance of individual signal 
processing steps differentiating mel spectra and power normalized 
spectra that result in the increased robustness.  
 

2. METHODS 
 

The PNS-Gabor features we propose in this paper comprise 
three steps: (1) Calculate the power normalized spectrum (2) 
Process the spectra with a Gabor filter bank (3) Apply non-linear 
processing with MLPs. We describe the three parts in the following 
sections.  

 
2.1 Power normalized spectrum 
 

PNCC differs from MFCC in three respects (Fig. 1): (1) 
gammatone filter (2) medium-duration bias subtraction (3) power-
law nonlinearity. First, PNCC employs gammatone auditory filters 
based on equivalent rectangular bandwidth. Gammatone filters are 
derived from psychophysical observations of the auditory 
periphery, i.e., the filter bank represents a model of cochlear 
filtering. We use 30 channels for 8 kHz corpus and 40 channels for 
16 kHz corpus as suggested by [4]. For mel spectra, we use 23 
channels defined in the ETSI standard for MFCC calculation [18]. 
Second, a subtraction of the medium-duration power bias is carried 
out, where the bias level calculation was based on the ratio of 
arithmetic mean and geometric mean (AM-GM ratio) of the 
medium duration power, which is motivated by a decrease of the 
AM-GM ratio for reduced noise power. Finally, a power  

 

 
Figure 2 : Clean and noisy mel spectrogram (left) and power 

normalized spectrogram (right).  

nonlinearity with an exponent of 0.1 replaces the logarithm 
nonlinearity for compression. This nonlinearity might be a better 
model for threshold effects of auditory fire rate responses. 
According to the observation in [19], the auditory nerve firing rate 
is constant when the input sound pressure level is below -10 dB, 
while the output of the logarithm would be dominated by noise 
when the intensity of the input signal is low. An example of mel 
spectrum and power normalized spectrum is shown in Fig. 2 
illustrating greater insensitivity to noise for the power normalized 
spectrogram. In the following experiments, the effect of these 
differences between MFCC and PNCC features is independently 
analyzed.  
 
2.2 Gabor features 

 
PNS Gabor features are obtained by convolving two 

dimensional modulation filters and the PNS. To generate filters 
serving as model for spectro-temporal receptive fields (STRFs), we 
multiply a complex sinusoid with a Hanning envelope. The 
complex sinusoid (with time modulation frequency ωn

 and 
spectral modulation frequency ωk

) is represented as: 
 

          (1) 
 

while the Hanning envelope is given (with Wn
 and Wk

 denote 
window length) 

 

        (2)  
 
By tuning parameters of spectral and temporal modulation 

frequency, Gabor functions have different extent and orientation 
for a given number of oscillations under the envelope as used in 
this study. In particular, if the spectral modulation frequency is set 
to zero, only temporal modulation filtering is performed. The 
Gabor filter bank used here has been adapted from [20]. The 59 
Gabor filters with the corresponding temporal and spectral 
modulation frequencies are shown in Fig. 3. Filters with a large 
spectral extent result in high correlations between frequency 
channels (i.e., moving large filters by only one channels has only 
small influence on the filter output). Hence, a subset of the possible 
combinations are used to avoid high correlations of feature 
components, resulting in 631-dimensional vectors using 30 
channels of the power normalized spectrum and 814-dimensional 
vectors using 40 channels of power normalized spectrum. (A 449-
dimensional vector is used for the case of Gabor-filtered mel 
spectrum.) 
 
2.3 MLP processing 

 
MLPs can handle correlated and high-dimensional features with 

few distributional assumptions. As is typical in tandem processing, 
an MLP is trained to generate posterior phone probabilities, 
followed by computing the logarithm and PCA to yield features 
used as input to HMMs. Means and variances were normalized per 
utterance before HMM training and testing. 
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Figure 3: 2D-filters to the PN spectrum, shown by temporal 

and spectral modulation frequencies. 
 

3. EXPERIMENTAL SETUP 
 

The approach proposed here is evaluated with the Aurora2 testing 
environment covering the recognition of noisy digits, and with a 
noisy version of the Wall Street Journal (WSJ) corpus. For 
Aurora2, we use the clean connected digits for training. Three 
testing sets (set A, B and C) are used with clean and noisy data.  
The testing data set A covers four different noise types  (subway, 
babble, exhibition and car), while the testing data B covers four 
different noise types (restaurant, street, airport and train station). 
The testing set C covers two noise types respectively from set A 
and set B (subway and street), plus additional convolution noise. 
Different SNR values ranging from 0 dB to 20 dB were tested in 
each case. The HMMs were configured according to [21]: whole-
word HMMs with 16 states and with 3-Gaussian mixture with 
diagonal covariance per state. Baseline results are obtained with 
the standard Aurora2 MFCC frontend (WI007) [18], which 
converted each signal frame into 13 cepstral coefficients, with 
subsequent addition of first and second derivative and utterance-
wise mean and variance normalization. The average word error 
rates (WERs) of this task are obtained by averaging over WERs of 
the test sets.  
       For WSJ, we started out with clean data taken from a 77.8 
hour WSJ1 dataset (284 speakers) for training and an 0.8 hour 
WSJ-eval94 dataset (20 speakers) for testing. Estimated additive 
and channel noise from real-world recordings was applied to both 
training and testing dataset using the “renoiser” tool [22]. Designed 
for use in the DARPA RATS project, the system analyzes data 
from RATS rebroadcast example signals (in this case, 
LDC2011E20) to estimate the noise characteristic including SNRs 
and frequency-shifts; the original data is described in [23] and 
consists of a variety of continuous speech sources that have been 
transmitted and received over 8 different radio channels, resulting 
in significant signal degradations. The 8 different radio channel 
characteristics were estimated by the renoiser tool as specified in 
Table 3. We applied the same noise characteristics to WSJ data 
yielding what we refer to as “re-noised WSJ”.  
      We use the HTK toolkit [24] for both training and decoding 
with both data bases. The acoustic models are cross-word triphones 
estimated with maximum likelihood. Except for silence, each 
triphone is modeled using a three-state HMM. The resulting 
triphone states are clustered using decision trees to 5000 tied states, 
each of which was modeled by 32-component of Gaussian mixture 
model. We use version 0.6 of the CMU pronunciation dictionary 

(stress removed) and the standard 5k bigram language model 
created at Lincoln Labs for the 1992 evaluation.  
       All MLPs were trained with a temporal context window of 9 
successive frames. We used 160 hidden nodes for Aurora2 and 500 
hidden nodes for re-noised WSJ. In Aurora2, the output layer 
consisted of 56 context-independent phonetic targets while 41 
context-independent phonetic targets were defined for noisy WSJ. 
MFCCs +∆ +∆∆ were then concatenated with Gabor features. The 
dimension of Gabor features is then reduced via PCA to 32, 
resulting in a 71-dimension feature vector. 
 

4. RESULTS AND DISCUSSION  
 
In Table 1, we compare several different configurations of PNS-
Gabor features and Mel-Gabor features after concatenating MFCC 
in Aurora2. The result for Mel-Gabor features plus MFCC is 
presented in row (2), which is 15% relative better than the MFCC 
baseline. From row (3) to row (6), the results were obtained from 
deconstructing PNS into four different configurations. In row (7), 
instead of being filtered by Gabor filters, PNCC was used as input 
for MLP, from which we could investigate the benefit of 
combining MFCC and PNCC without Gabor filtering.  As shown 
in row (3), we only switched from mel filter banks to gammatone 
filter banks. We referred to it as GT(l)-Gabor. In row (4), 
gammatone filter banks were further processed by power 
nonlinearity compression p instead of logarithm compression l, 
which was referred as GT(p)-Gabor. PNS(l)-Gabor features were 
obtained by performing a power bias subtraction followed by 
logarithmic compression. The result for PNS-Gabor features is 
presented in row (6). GT(l)-Gabor didn’t perform as well as 
conventional Mel-Gabor features, while GT(p)-Gabor gave a slight 
improvement. This implies that the power nonlinearity is helpful to 
inhibit the effects of noise, as expected.  

  
Table 1: Aurora2 WER of Gabor features with different spectro-
temporal representations. The baseline is a 39-dimensional MFCC 
plus the first 2 derivatives with mean and variance normalization. 
 
However, as shown in Table 1, the most effective step is power 
bias subtraction, from which we got 16.7% relative improvement 
by comparing GT(l)- Gabor and PNS(l)-Gabor features. The best 
result came from the PNS-Gabor feature, which is 20% relatively 
better than Mel-Gabor feature. Even after power bias subtraction, 
power nonlinear compression can help. In row (7), we showed the 
WER from combination of PNCC and MFCC using MLP, which is 
significantly worse than the proposed Gabor-filtered PNCC 
augmentation of MFCCs; the latter is 15.7% better. 
      In Table 2, the proposed front end is compared with other noise 
robust features, ETSI-AFE [5] and PNCC [4]. WER of Mel-Gabor 
features and PNS-Gabor features plus MFCC are presented in row 
(4) and row (5). The best result was obtained by concatenating 
MFCC and PNS-Gabor features, which is 13.3% better than PNCC 

 

 Filter 
bank 

Pow 
Sub 

Com. Gb. WER 

(1) MFCC - - - - 18.14 
(2) Mel-Gb + MFCC Mel no log yes 15.41 
(3) GT(l)-Gb + MFCC GT no log yes 15.75 
(4) GT(p)-Gb + MFCC GT no pow yes 14.86 
(5) PNS(l)-Gb + MFCC GT yes log yes 13.12 
(6) PNS-Gb + MFCC GT yes pow yes 12.30 
(7) PNCC-MLP + MFCC GT yes pow no 14.06 
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and 6.0% better than ETSI-AFE. Fig. 4 and Fig. 5 provide a more 
detailed comparison by different SNRs and noise type respectively. 
As shown in Fig. 4, the improvements of PNS-Gabor plus MFCC 
was much more evident for noisier conditions. From Fig. 5, PNS-
Gabor plus MFCC performed better for all the environments. 

 
Table 2: WER of noise-robust features for Auroa2 

 
       Beyond the experiments conduced on the small vocabulary 
Aurora2 task, we compared the features in re-noised WSJ for 
multi-conditioned training and testing. The WER is shown in Table 
4. On average, Gabor features (Mel-Gabor plus MFCC and PNS-
Gabor plus MFCC) are significantly better than other features for 
most channels, especially for channels with a frequency shift 
characteristic (channel D and channel H). PNS-Gabor plus MFCC 
is relative 30.9% better than MFCC and 24.7% better than PNCC. 
 

  
 

Figure 4: Average word accuracy of PNS-Gabor plus MFCC, Mel-
Gabor plus MFCC and PNCC under different SNR conditions for 
the Aurora 2 task. 

5. CONCLUSION 
 
In this paper, we employed a more robust spectro-temporal 
representation incorporating key parts of the PNCC algorithm, 
augmented by Gabor filtering and an MLP. These PNS-Gabor 
features improved WER for both small and large vocabulary noisy 
recognition tasks. It appears that power bias subtraction and Gabor 
filtering are the key steps for decreasing the WER. PNS-Gabor 
features were particularly effective for frequency-shifted channels 
in the larger task. Extending the feature vector to include PNS-
Gabor gave around 30% improvement relative to the MFCC 
baseline and yielded WER 13-25% better than PNCC. 
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Figure 5: Average word accuracy of PNS-Gabor plus MFCC, Mel-
Gabor plus MFCC and PNCC under different environments for the 
Aurora 2 task. 
 

 
Table 3: channel characteristic in re-noised WSJ 

 
Table 4: WER of noise-robust features for re-noised WSJ 

 

 

 WER Rel to (1) Rel to (2)  

(1) MFCC 18.14 - -27.8% 

(2) PNCC 14.19 21.7% - 

(3) ETSI-AFE 13.09 27.8% 7.8% 

(4) Mel-Gb + MFCC 15.41 15% -8.6% 

(5) PNS-Gb + MFCC 12.30 32.2% 13.3% 

 

 Microphone SNR Frequency 
shift 

Channel A  Motorola HT1250 15.6 0 
Channel B Midland GXT1050 6.2 0 
Channel C Midland GXT1050 6.0 0 
Channel D Galaxy DX2547 3.5 180.9 Hz 
Channel E Icom IC-F70D 0.9 0 
Channel F Trisquare TSX300 3.0 0 
Channel G Vostek LX-3000 18.7 0 
Channel H Magnum 1012 HT 3.0 120.7 Hz 

 

WER MFCC 
 

ETSI-
AFE 

PNCC Mel-Gb 
+MFCC 

PNS-Gb 
+MFCC 

Clean   19.06 19.22 16.21 16.87 14.04 
Channel A  42.22 36.89 32.60 30.53 26.78 
Channel B 49.25 48.44 46.79 41.66 35.09 
Channel C 51.05 49.38 47.15 41.72 34.79 
Channel D 59.52 54.49 58.18 46.48 40.35 
Channel E 78.43 74.05 72.93 63.51 55.46 
Channel F 65.58 62.48 60.41 51.23 44.28 
Channel G 23.55 23.25 20.72 21.56 17.24 
Channel H 56.23 51.56 53.01 44.86 39.39 
Average 49.4 46.6 45.3 39.8 34.2 
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