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ABSTRACT

This paper considers using the feature enhancement approach for
automatic recognition of speech corrupted by severely nonstationary
noise, caused for example by interfering talkers and inter-frame dis-
tortion induced by reverberation. In particular, we focus on the issue
of feature-domain noise model estimation and investigate a recently
proposed approach, called noise model transfer (NMT), for estimat-
ing the rapidly changing noise model parameter values. Based on
the fact that noise spectral changes can be detected more easily in
the power spectrum domain than in the feature domain, NMT esti-
mates the noise model parameter values for each time frame by using
both observed feature vectors and noise power spectral estimates, on
the assumption that a separate noise power spectrum estimator is
available. This is achieved by finding the best transformation that
maps the power spectra onto the noise model parameter space in the
maximum likelihood sense. Whereas the transformation was previ-
ously modeled using a bias vector, this paper employs a more flexible
affine transformation model. The results of 20,000-word reverber-
ant speech recognition experiments show the advantage of the affine
transformation model.

Index Terms— Robust speech recognition, nonstationary noise,
reverberation, vector Taylor series, noise model transfer

1. INTRODUCTION

Noise robustness has been one of the main topics in the automatic
speech recognition (ASR) research, and its importance appears to
be growing with the rapid spread of ASR technology. Of the vari-
ous noise robustness approaches, this paper focuses on feature en-
hancement methods, which attempt to estimate a sequence of clean
feature vectors based on the corresponding corrupted feature vector
sequence. One exemplary method called vector Taylor series (VTS)
enhancement exploits models of clean and noise feature vectors [1,2]
to achieve this estimation task. The parameters of the clean speech
model are trained in advance while those of the noise model are es-
timated in the recognition phase based on the observed data.

One of the unsolved challenges as regards feature enhance-
ment is to achieve accurate noise model estimation under ‘ultra-
nonstationary’ noise conditions, which are typically created by
interfering talkers and reverberation. Most conventional methods
employ a noise model consisting of a single Gaussian probability
distribution of additive noise feature vectors and a constant bias rep-
resenting a convolutional noise feature vector. The model parameters
are usually estimated on the assumption that they are invariant [1, 2]
or change slowly with time [3–5]. However, this assumption hinders
modeling and the cancellation of the ultra-nonstationary noise1.

1The dynamic noise adaptation proposed in [5] can deal with large spo-

To solve this problem, we proposed an approach called noise
model transfer (NMT) [6] by extending the idea described in [7].
Unlike conventional methods, this approach can exploit both ob-
served feature vectors, representing spectral envelopes, and other
signal properties, such as harmonic structures and phase spectra, that
are usually discarded during feature extraction but that are useful for
separating nonstationary noise from target speech. In NMT, we as-
sume the availability of a reliable noise power spectrum estimator
that can quickly track noise changes by leveraging such additional
signal properties. Then, we calculate the optimal transformation that
maps each of the estimated frame-specific noise power spectra to
the space of the noise model parameters in the maximum likelihood
sense. The transformation can be modeled in many different ways,
and a bias transformation model was employed in [6]. Even with
the simple bias transformation model, NMT removed a quantity of
recognition errors in both meeting speech and reverberant speech
recognition tasks.

This paper presents an algorithm for performing NMT using
an affine transformation, which has more adjustable parameters and
thus is more flexible than the bias transformation model. Specif-
ically, we hypothesize an affine transformation that projects the
feature-domain representation of each noise power spectrum esti-
mate that is obtained using the separate noise power spectrum esti-
mator onto the mean vector space of an additive noise model. The
affine transformation matrix is optimized jointly with the additive
noise covariance matrix and the convolutional noise feature vector
to maximize the parameter likelihood. The resulting algorithm is
applied to reverberant speech recognition by regarding late reverber-
ation as nonstationary additive noise [8]. This paper also expands
the experiment beyond that described in our previous report [6]:
whereas we previously performed a reverberant digit recognition
test, here we use a 20,000-word reverberant speech recognition task
under both clean and multi-style training conditions.

2. REVIEW OF NOISE MODEL TRANSFER

This section reviews the concept of NMT after briefly looking at the
VTS enhancement method, which is used along with NMT.

2.1. Vector Taylor series for feature enhancement
VTS is an approach to noise robust speech recognition. The goal
is to correctly transcribe an observed speech signal that is corrupted
by environmental noise. The observed signal, denoted by y(s), is
generated as

y(s) = h(s) ∗© x(s)+n(s), (1)

radic changes in noise characteristics. However, it seems ineffective for de-
scribing continuous changes that are characteristic of interfering speech and
reverberation noise.
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where x(s) is a clean speech signal, n(s) an independent additive
noise signal, h(s) an impulse response describing convolutional
noise, and ∗© denotes a linear convolution operator. While (1) de-
scribes the relationship between the clean and corrupted speech
signals in the time domain, the relationship is approximately repre-
sented by the following equation in the feature domain (assuming
the use of logarithmic mel-frequency spectral representation):

yt = xt +h+ log(1+ exp(nt −xt −h)), (2)

where yt, xt, h, and nt are the vectors of the logarithmic mel-
frequency spectral features extracted from y(s), x(s), h(s), and n(s),
respectively, at the tth short time frame2. The right hand side of
(2) is called the mismatch function and is hereafter represented as
f (xt,nt,h).

Given the corrupted feature vector yt, the VTS method estimates
the underlying clean feature vector xt by leveraging models of clean
and additive noise feature vectors so that a subsequent speech rec-
ognizer can receive feature vectors that are as clean as possible. The
clean speech model is often represented in the form of a Gaussian
mixture model (GMM) with diagonal covariance matrices as fol-
lows:

px(xt) =
K∑

k=1

πk fN(xt;μ
x
k ,diag(σx

k )), (3)

where K is the number of Gaussians, diag(x) represents the diago-
nal matrix with the elements of vector x on its leading diagonal, and
fN(·) is the probability density function (pdf) of the multivariate nor-
mal distribution. On the other hand, the additive noise model takes
the form of a single Gaussian pdf given by

pn(nt;θt) = fN(nt;μ
n
t ,diag(σn

t )), (4)

where θt = {μn
t ,σ

n
t } with μn

t and σn
t being the mean vector and the

leading diagonal of the covariance matrix, respectively. Note that
the additive noise model parameters depend on frame index t to ac-
count for nonstationary noise. The clean speech model parameters
{πk,μ

x
k ,σ

x
k }1≤k≤K are learned from training data. On the other hand,

the time series of the additive noise model parameters (θt)1≤t≤T has
to be estimated jointly with the convolutional noise feature vector
h based on the observed data (yt)t (we hereafter omit the range of
index values when representing sets and sequences). With the above
clean speech and additive noise models, a minimum mean square er-
ror (MMSE) estimate of the clean feature vector xt can be calculated
by linearizing the mismatch function f (·) around the mean vectors of
the clean speech and additive noise models (see [1] for details).

2.2. Noise model transfer (NMT)
NMT is an approach for estimating the additive noise model param-
eters (θt)t and the convolutional noise feature vector h. This novel
approach takes advantage of a separate noise power spectrum esti-
mator that can promptly detect changes in noise characteristics. This
is different from existing methods, which estimate the noise model
parameters directly from the observed feature vectors (yt)t. The un-
derlying philosophy is that tracking very nonstationary noise is diffi-
cult to achieve in the feature domain and should be done in the time

2When deriving (2) from (1), we assumed h(s) to be sufficiently short
so that it could be approximated as multiplicative noise in the short time
Fourier transform (STFT) domain. As discussed in Section 4, we deal with
reverberation, which is represented by long impulse responses, by regarding
the late reverberation, constituting a large part of the interferences caused by
reverberation, as nonstationary additive noise.

or power spectrum domain. This is because the feature vectors retain
only the spectral envelope information while the other signal prop-
erties, which are usually discarded during feature extraction, pro-
vide useful information for noise estimation. Thus, an NMT-based
noise model estimator uses both the additive noise power spectral se-
quence, (N̂t)t, produced by the noise power spectrum estimator and
the corrupted feature vector sequence (yt)t.

With the NMT approach, we hypothesize a transformation z(·)
that maps each additive noise power spectrum estimate N̂t into the
parameter value set of the additive noise model as follows:

θt = z(N̂t;φ), (5)

where parameter set φ characterizes the transformation. Then we
jointly estimate the transformation parameters and the convolutional
noise feature vector to maximize the likelihood as

(φ̂, ĥ) = argmax
(φ,h)

T∏
t=1

py(yt;z(N̂t;φ),h), (6)

instead of directly estimating the noise model parameters. Function
py(·) is the pdf of the observed feature vector, which is calculated by
combining the clean speech and noise models. One desirable prop-
erty of NMT is that we can allow for large changes in the additive
noise feature vector model parameters while keeping the number of
adjustable parameters small. Our previous study [6] employed the
bias transformation model given by

μn
t = d(Nt)+b; σn

t = c, (7)

where b and c are the transformation parameters, i.e., φ = {b,c}.
Function d(·) denotes an operator that calculates a feature vector
from a power spectrum. Specifically, d(X) = log(WX), where W
is a mel-frequency filter-bank matrix.

3. NMT USING AFFINE TRANSFORMATION

This paper investigates the following affine transformation model:

μn
t =Ad(Nt)+b; σn

t = c, (8)

where A, b and c comprise the transformation parameter set φ. This
model is more flexible than the bias model and is expected to yield
better noise model parameter values. The first equation of (8) is
equivalent to the following equation:

μn
t =Bdt, (9)

where B = [A,b] and dt = [d(Nt)T ,1]T . Hence, we jointly optimize
the affine transformation matrix B, the additive noise covariance
vector c, and the convolutional noise feature vector h to maximize
the likelihood as shown in (6), where the transformation parameter
φ in (6) is given by φ = {B,c}.

We employ the expectation-maximization (EM) framework to
achieve the maximum likelihood estimation task given by (6). We
derive an optimization algorithm by regarding the Gaussian index
of the clean speech model and the additive noise feature vector as
the latent variables of the EM. Thus, at the E-step, we calculate the
following two quantities for each possible combination of t and k
values using the current parameter value set {φ̂, ĥ}:

1. the posterior probability γt,k of the underlying clean feature
vector xt being generated from the kth component of the
clean speech GMM;
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2. the posterior pdf pn|y,k(nt |yt,k; φ̂, ĥ) of the true additive noise
feature vector nt. This pdf is expressed by a Gaussian distri-
bution. We denote its mean vector and covariance matrix by
μ

n|y
t,k and Σ

n|y
t,k , respectively.

See Appendix for the formulae for caluculating these posteriors.
Then, at the M-step, we calculate a set of updated parameter values
by maximizing the following auxiliary function:

Q(φ,h) =
∑
t,k

〈
log py|n,k(yt |nt,k;h\μx

l , φ̂, ĥ)+ log pn(nt;φ)
〉
, (10)

where the operator 〈·〉 takes the expectation over nt with respect
to the posterior distribution of nt calculated at the E-step. Func-
tion py|n,k(·) represents the conditional pdf of the corrupted feature
vector given the additive noise feature vector and the component in-
dex of the clean speech GMM. As shown in Appendix, py|n,k(·) is a

Gaussian distribution, whose mean vector μy|n
t,k and covariance ma-

trix diag(σy|n
t,k ) are obtained by linearizing the mismatch function us-

ing the zeroth and first-order terms of its Taylor series. The backslash
that appears in the notation py|n,k(·) means that the Taylor series is
calculated around the variables placed after the backslash. As the in-
volved pdfs are all Gaussians, the parameter values maximizing the
auxiliary function can be easily obtained as3

B̂(new) =RµdR
−1
dd ; ĉ(new) =

1
T

(
Rµµ − B̂(new)RT

µd

)
; (11)

ĥ(new) =

∑
t,k γt,kh

�
t,k∑

t,k γt,kh
⊥
t,k

+ ĥ, (12)

using the following definitions:

Rdd =
∑
t,k

γt,kdtd
T
t ; Rµd =

∑
t,k

γt,kμ
n|y
t,k d

T
t ; (13)

Rµµ =
∑
t,k

γt,k

(
μ

n|y
t,k

(
μ

n|y
t,k

)T
+Σ

n|y
t,k

)
; (14)

h�t,k =ĝt,k

(
yt − f̂t,k −

(
1− ĝt,k

) (
μ

n|y
t,k − B̂dt

))
; h⊥t,k =

ĝt,k

σ
y|n
t,k

, (15)

where f̂t,k = f
(
μx

k ,B̂dt, ĥ
)

and ĝt,k = g
(
μx

k ,B̂dt, ĥ
)

with function
g(·) being the partial derivative of the mismatch function f (·) with
respect to the clean feature vector. The multiplication and division
operations are performed on an element-by-element basis.

4. REVERBERANT SPEECH RECOGNITION USING NMT

Now, we consider applying NMT to single-microphone reverber-
ant speech recognition. The reverberation seriously degrades the
recognition performance. This problem has already been tackled
by some researchers, yielding solutions ranging from signal dere-
verberation [10–12] to acoustic model adaptation [13–16]. A feature
enhancement method for reverberant speech recognition is proposed
in [17]. A comprehensive review of the reverberant speech recogni-
tion techniques is provided in [8].

To apply NMT to reverberant speech recognition, we regard late
reverberation as nonstationary additive noise as discussed below. It

3Note that the set of the presented update formulae does not necessarily
increase the likelihood because the center of the Taylor series expansion,
which depends on the parameter values, changes from iteration to iteration.
A back-off method can be employed to ensure the likelihood increase [9].
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Fig. 1. Processing and data flow diagram of NMT-based reverberant
feature enhancement.

is known that a room impulse response, which describes the change
in a speech signal caused by reverberation, can be divided into three
portions that are called direct sound, early reflections, and late re-
verberation [18]. The late reverberation consists of myriad reflec-
tions that arrive after the early reflections, which typically disappear
within 50 ms. Since the autocorrelation of a clean speech signal
tends to vanish at lags greater than 50 ms, the convolution of the
late reverberation and the clean speech signal, which is also called
the late reverberation, is almost uncorrelated with the direct sound.
Furthermore, by definition, the early reflections are represented by a
short impulse response. Therefore, we can reasonably use the con-
ventional mismatch function given by (2) to describe the impact of
reverberation in the feature domain, which allows us to exploit the
widely used VTS method. This is one advantage of the reverber-
ant feature enhancement method described here over the method
proposed in [17], which employs complex models of speech and
reverberation dedicated to reverberant feature enhancement. How-
ever, please note that we do not intend to contrast the proposed
method and existing reverberant feature enhancement methods. The
aim of this paper is to compare the bias transformation model and
the affine transformation model. Although, we consider reverberant
speech recognition as a test bed, NMT is applicable to a wide range
of tasks including meeting speech recognition [6] and microphone-
array speech recognition [7].

Based on the development described above, we can construct
a complete NMT-based reverberant feature enhancement algorithm.
The algorithm is explained below using the processing and data flow
diagram shown in Fig. 1.

1. Power spectrum extraction: The short-time Fourier transform
of a reverberant speech signal captured by a microphone is
calculated. Then, the squared magnitudes of the resulting
Fourier coefficients are computed to obtain the short-time
power spectra of the reverberant speech signal.

2. Log mel-frequency filterbank: The reverberant power spectra
are fed into a mel-frequency filter bank, and the logarithms
of the filter bank outputs are calculated to obtain the logarith-
mic mel-frequency spectral feature vectors of the reverberant
speech signal.

3. Late-reverberation estimation: The late-reverberation power
spectra are calculated by using the method proposed in [19].
This method estimates each short-time power spectrum of
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Table 1. WER results of reverberant speech recognition experi-
ments. The baseline clean speech WER was 10.2%.

Clean training Multistyle training
Reverberant 93.5% 44.8%
Bias NMT 55.9 % 35.1%

Affine NMT 47.7% 32.9 %

the late reverberation by simply time-shifting the reverberant
power spectrum sequence as Nt = αYt−Δ, where Δ denotes
the time-shift amount, which is set at 50 ms, and α is a de-
cay rate that depends on reverberation time. Although [19]
requires an estimate of the reverberation time to find an ap-
propriate decay rate, this parameter can be set at an arbitrary
value, independent of the reverberation time, in the proposed
algorithm. This is because the decay rate is translated into
a constant bias of the feature vectors, which is automatically
adjusted via the optimization of the affine transformation ma-
trix C.

4. Noise model transfer (using affine transformation): Based on
the late-reverberation power spectra and the reverberant fea-
ture vectors, the noise model parameters are optimized using
the NMT algorithm described in the previous section.

5. Vector Taylor series enhancement: Finally, the enhanced log-
arithmic mel-frequency spectral feature vectors are calculated
with VTS using the reverberant feature vectors and the noise
model parameters. The enhanced logarithmic mel-frequency
spectra are converted to the mel-frequency cepstral coeffi-
cients and their velocity and acceleration coefficients, which
are fed into a back-end speech recognizer.

5. EXPERIMENTAL RESULTS

We conducted two reverberant speech recognition experiments to
compare the bias and affine transformation models for NMT. In the
first experiment, we trained a speaker-independent clean acoustic
model using about 250 hours of training data contained in the Wall
Street Journal (WSJ) corpus [20]. The acoustic model consisted
of phoneme-based left-to-right HMMs with three hidden states per
phoneme and ten Gaussians per state. The feature vector used for
recognition had 39 dimensions, consisting of 13 static MFCCs (in-
cluding C0) and their velocity and acceleration coefficients. We used
a 20,000-word trigram language model. We created reverberant ut-
terances by convolving clean speech signals with a room impulse
response recorded in a meeting room with a reverberation time of
0.78 s and a speaker-to-microphone distance of 2 m. The clean
speech signals were taken from the si et 20 test set of the WSJ cor-
pus, which consists of 333 utterances spoken by eight speakers (four
male, four female). The second experiment presumed a more practi-
cal situation, where we trained an acoustic model using speech sig-
nals with six different reverberation conditions. To generate such
multistyle training data, we split the clean training data set into six
groups. The speech signals of different groups were convolved with
different room impulse responses. The reverberation time of the
training impulse responses ranged from 0 (clean) to 1.3 s. The other
experimental conditions were unchanged from the first experiment.

Table 1 lists the word error rates (WERs) we obtained under
different experimental conditions. The baseline clean speech WER
was 10.2%, which is slightly larger than the state-of-the-art WSJ
task recognition performance. This results from both the use of
C0 instead of the log energy and the use of a classical recognizer

with a likelihood maximizing acoustic model and a conventional
trigram language model. With the clean acoustic model, the WER
sharply increased to 93.5% for reverberant speech. The WER was
reduced to 55.9 % when we performed feature enhancement prior to
recognition using bias transformation-based NMT. The affine trans-
formation further reduced the WER to 47.7%, indicating a relative
WER reduction of 14.7 % in comparison with the bias transforma-
tion model. The multistyle training improved the speech recognition
performance and achieved a WER of 44.8% for reverberant speech.
Feature enhancement preprocessing using bias and affine transfor-
mation models reduced the WER to 35.1% and 32.9%, respectively,
which means that the affine transformation model achieved a rela-
tive WER reduction of 6.27% over the bias transformation model.
Note that the multistyle acoustic model used for recognizing the en-
hanced feature vectors was trained on the feature vectors that were
obtained by enhancing the training reverberant utterances, which is
sometimes called adaptive training [21, Section 33.7.1]. It is impor-
tant to note that, even with multistyle training, the affine transforma-
tion model improved the speech recognition performance compared
with the bias transformation model.

6. CONCLUSION

This paper presented an algorithm for performing NMT using an
affine transformation, which has more adjustable parameters and
thus is more flexible than the bias transformation model that was
previously used. The feature-domain noise model parameter values
produced by NMT can be used to enhance corrupted feature vectors.
The present method was applied to reverberant speech recognition
by regarding late reverberation as nonstationary additive noise. Ex-
perimental results for large-vocabulary reverberant speech recogni-
tion showed that the affine transformation model eliminated more
speech recognition errors than the bias transformation model.

7. APPENDIX

• Conditional pdf of corrupted feature vector
py|n,k(yt |nt,k;h\x′,n′,h′) = fN

(
yt;μ

y|n
t,k ,diag

(
σ

y|n
t,k

))

μ
y|n
t,k = f (x′,n′,h′)+ (1−g(x′,n′,h′))(nt −n′)
+g(x′,n′,h′)(μx

k −x′ +h−h′)
σ

y|n
t,k =g(x

′,n′,h′)2σx
k

• Marginal pdf of corrupted feature vector
py|k(yt |k;θt,h) = fN

(
yt;μ

y
t,k,diag

(
σ

y
t,k

))

μ
y
t,k = f (μx

k ,μ
n
t ,h)

σ
y
t,k =g(μ

x
k ,μ

n
t ,h)2σx

k + (1−g(μx
k ,μ

n
t ,h))2σn

t

• Posterior probability of Gaussian index

γt,k =
πk py|k(yt |k;θt,h)∑

k′ πk′ py|k(yt |k′;θt,h)

• Posterior pdf of additive noise feature vector
pn|y,k(nt |yt,k;θt,h) = fN

(
nt;μ

n|y
t,k ,diag

(
σ

n|y
t,k

))

μ
n|y
t,k =μ

n
t +ξ

n
t,kg(μ

x
k ,μ

n
t ,h)(yt −μy

t,k)

σ
n|y
t,k =ξ

n
t,kσ

y|n
t,k

ξn
t,k =

σn
t,k

σ
y
t,k
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