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ABSTRACT

This paper introduces a new optimization-based approach to Sparse
Imputation/spectral denoising for robust Automatic Speech Recog-
nition (ASR) applications. In particular, we propose an algorithm
which couples frame-level optimization and strategic reconciliation
of the predictions in a tight manner. We demonstrate that the pro-
posed algorithm outperforms the current state-of-the-art two-step
strategy of first optimizing and then averaging across windows,
while maintaining the complexity advantages of efficient techniques
like the Elastic Net. Our algorithm is also theoretically able to better
exploit the properties of a collinear dictionary, which occurs with
spectral exemplars from most speech corpora. Through experiments
on the Aurora 2.0 noisy digits database, we demonstrate that this
new technique achieves significant performance gains (7.67% on
average over various SNR levels) over just simply averaging across
large number of predictions.

Index Terms— Optimization, Denoising, Robustness, Auto-
matic Speech Recognition

1. INTRODUCTION

Compressed sensing/Sparse Representation techniques have recently
been employed in spectral denoising for speech recognition applica-
tions. Prior works [1, 2] have proposed the use of L1 optimization
techniques and demonstrated appreciable gains in speech recogni-
tion rates over the original noisy conditions. The L1 optimization
considers an objective function of the following form:

min
a

‖Da− F ‖2
2
+ λ ‖a‖

1
(1)

In Equation (1), F is the observed feature vector, a is the vector
of activations, and D is the dictionary. This process is known as
“Sparse Imputation” [1]. In this paper, we propose a technique to
further improve upon the Sparse Imputation process.

2. RELATED WORK

Kanevsky et al. [3] have suggested the use of the Elastic Net algo-
rithm for robust phoneme recognition. In previous work [4], we have
also suggested the use of Elastic Net [5] as a solution to better ex-
ploit the properties of a dictionary of collinear spectral exemplars
in the Missing Data Techniques (MDT) setting, and also provided a
study of why sparsity is important in the regularization framework

for spectral denoising. In addition, we [6] showed the importance of
grouping spectral atoms for improving speech recognition.

When dealing with utterances of different lengths, prior works
[1, 4, 6] have used the classical sliding window approach to extract
fixed-duration frames for input to an appropriate regularization al-
gorithm for noise removal. Subsequently, to reconcile predictions
(i.e. recombine the individual imputed results from the contributing
windows) from the analysis frames, an averaging strategy was pro-
posed whereby the predictions are all added up and then averaged by
the number of overlapping frames. While such a strategy improves
performance compared to when just optimizing on non-overlapping
frames, a more robust way of combining the predictions is possible,
which we will introduce in this paper.

The main contribution of this paper is to propose an extension to
the simple averaging reconciliation approach for spectral denoising.
Instead of just simple averaging, we propose an alternative frame-
work which tightly couples the frame-level optimization and the lo-
cal prediction reconciliation step. Following the evaluation practice
set by prior works, we will use the Aurora 2.0 noisy digits database
for our denoising experiments. We will demonstrate that the pro-
posed framework yields an appreciable improvement in ASR accu-
racies.

The structure of the paper is as follows: Section 3 details the
framework for speech spectral denoising and also our algorithm for-
mulation. Besides describing our algorithm in detail, we also pro-
vide justification as to why this algorithm is well-suited to perform
in the setting of spectral exemplars. Section 4 provides a description
of our ASR system setup/settings and also provides the results of our
experiments with interpretation. Section 5 concludes with possible
future work and extensions to our proposed system.

3. FRAMEWORK AND ALGORITHMIC DESCRIPTION

Fig. 1 shows the schematic of the ASR pipeline with a breakdown
of the feature extraction module. In this paper, we propose im-
provement to the regularization block by a more robust reconcili-
ation method.

3.1. Feature Extraction Procedure

At the feature extraction stage in the ASR pipeline, after the spectral
features are extracted, we obtain a matrix of features of dimensions
NB×TF , where NB stands for the number of frequency bands in the
extraction process and TF , the duration of the utterance in number
of analysis frames.
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Fig. 1. Schematic of the Spectral Denoiser. The Regularization block can be broadly split into 3 steps: 1) Windowing 2) Regularization of
the Windows (local optimization) 3) Reconciliation of predictions
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Fig. 2. The diagram above shows the spectral plots of a particu-
lar noisy utterance. We can think of this as an image and employ
denoising techniques to clean up the noise artifacts evident in the
image

3.2. Linear formulation of Problem

If F is a feature vector of spectral exemplars (prior to taking the
logarithm), we assume the following linear model for our problem:

F = Da (2)

D is composed of a dictionary of spectral exemplars in this set-
ting.

3.3. Denoising problem formulation

We can treat the problem at hand as an image denoising problem,
where the feature values can be likened to the pixel intensities of an
image (as in Fig. 2).

The problem formulation is given by the following equation:

min
a

‖Da− F ‖2
2
+ λ ‖a‖

1
(3)

We will now proceed to describe the procedure by which we
obtain F .

When D is comprised of spectral exemplars extracted from
speech, D will have a tendency of being collinear, since spec-
tral images have energy localizations in similar regions for similar
sounding utterances. Thus, we [4] demonstrated the need for more
robust solutions to this problem, and showed the effectiveness of the
Elastic Net formulation:

min
a

‖Da− F ‖2
2
+ λ1 ‖a‖1 + λ2 ‖a‖

2

2
(4)

For each utterance, due to different durations, we will have dif-
ferent values of TF . To ensure that we have matrices of equal dimen-
sions each time we run our optimization, we adopt the strategy of a
sliding window matrix extraction. In particular, we define a window
of size NB × T and shift the window at regular intervals which is
predetermined. The vector F is then determined by linearizing the
extracted window.

To represent the window extraction process algebraically, let us
define a matrix Ri which is of dimensions TF × T . i indicates
the window count. Thus, by putting Identity matrix blocks and zero
blocks in appropriate locations in Ri, we can write the window ex-
traction process as follows:

Fs = FoRi (5)

In Equation (5), Fs refers to the window extracted subset and
Fo refers to the original feature matrix.

Prior works have attempted to reconcile the predictions by an av-
eraging strategy: at the end of all regularizations for a particular ut-
terance, the predictions are summed appropriately and then divided
by the number of times the sliding window overlaps at the particular
location. While this has yielded good results, we propose a more
tightly coupled way of optimization which further improves upon
the averaging framework as shown in a later section (Sec 4).
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3.4. Signal Reliability Masks

Before we describe the proposed optimization formulation, we
briefly review Signal Reliability Masks since we will be integrating
them in our optimization formulation. In this paper, we adopt a
simple binary mask [7] which is simply a matrix of dimensions
NB × TF consisting of zeros and ones with zero indicating an
unreliable component and one indicating a reliable component.

In particular, let us define a matrix E which extracts the reliable
rows of the feature vector F with respect to the reliability indication
by the binary mask. Then, the linear model as given in Equation (2)
can be rewritten as follows:

F reliable = EDa (6)

For subsequent notational convenience, we define:

Dreliable = ED (7)

Equation (4) can be rewritten as:

min
a

‖Dreliablea− F reliable‖
2

2
+ λ1 ‖a‖1 + λ2 ‖a‖

2

2
(8)

3.5. A Novel Formulation of the Optimization Problem

In section 3.3, we drew the analogy that the spectral denoising prob-
lem can be visualized as an image denoising problem. Elad et al [8]
have proposed an alternative framework for image denoising which
deals with the problem of image patches. We will likewise be moti-
vated by that framework and propose a new system which reconciles
the individual predictions by optimization.

Let us define a new matrix G which has the same dimensions
as Fo, representing the denoised version of Fo. In addition, denote
the number of extracted windows that we have by NW . A natural
generalization of the Maximum A Posteriori (MAP) estimate in this
case will be the following optimization:

min
ai∈{1...NW },G

λ ‖G− Fo‖
2

2
+

NW∑

i=1

‖Dai −GRi‖
2

2

+ λ0i ‖ai‖0 (9)

Note that the formulation in Equation (9) is an NP-hard problem
(due to the L0 norm term), and thus a convenient convex relaxation
can be formulated as follows:

min
ai∈{1...NW },G

λ ‖G− Fo‖
2

2
+

NW∑

i=1

‖Dai −GRi‖
2

2

+ λ1i ‖ai‖1 (10)

Since Equation (9) is convex, there are a variety of fast solutions.
However, to be better able to handle a dictionary D of collinear spec-
tral exemplars, we hereby propose the following formulation which
naturally ties in with the formulation of the Elastic Net:

min
ai∈{1...NW },G

λ ‖G−Fo‖
2

2

+

NW∑

i=1

‖Dai −GRi‖
2

2

+ λ1i ‖ai‖1 + λ2i ‖ai‖
2

2
(11)

To solve the formulation in Equation (11), we decouple the ex-
pression into a series of smaller optimization problems (by optimiz-
ing on each unknown sequentially). In particular, we employ the
Elastic Net algorithm to solve the following series of NW optimiza-
tion problems:

min
ai

‖Dai − F ‖2
2
+ λ1i ‖ai‖1 + λ2i ‖ai‖

2

2
(12)

From the ai’s obtained from the Elastic Net, we can now fix
them and proceed to optimize for G. From Equation (11) we can see
that we need to further solve the following optimization problem:

min
G

λ ‖G− Fo‖
2

2
+

NW∑

i=1

‖Dâi −GRi‖
2

2
(13)

For subsequent notational convenience, let us denote J =
λ ‖G− Fo‖

2

2
+
∑NW

i=1
‖Dâi −GRi‖

2

2
.

We can write:

‖Dâi −GRi‖
2

2
= âi

T
D

T
Dâi − âi

T
D

T
GRi

− R
T
i G

T
Dâi

+ R
T
i G

T
GRi (14)

Hence, taking the partial derivative of J w.r.t G:

∂J

∂G
= 2λ(G−Fo)−

NW∑

i=1

2DâiR
T
i + 2GRiR

T
i (15)

Setting the RHS of Equation (15) to be zero gives the following:

Ĝ =

(
λFo +

NW∑

i=1

DâiR
T
i

)(
λI+

NW∑

i=1

RiR
T
i

)
−1

(16)

Note that initial inspection of the term
(
λI+

∑NW

i=1
RiR

T
i

)
−1

might suggest that such a huge matrix inversion might lead to sig-
nificant complexity increase, and might not be worth our while.
However, note that Ri is a block extraction matrix, and thus
RiR

T
i will essentially be block diagonal. Hence, the expression

λI +
∑NW

i=1
RiR

T
i will be block diagonal as well and there are

efficient ways to invert such a matrix. Moreover, all the prior steps
to estimate ai in Equation (12) are essentially repeated applications
of the Elastic Net, and we see that our approach still retains the
complexity advantages of the Elastic Net.

Let us denote the final estimate for a particular window (after
reshaping back to the dimensions NB × T ) by Westimate.

We then proceed to solve the following optimization problem to
reconcile all predictions from the individual windows:

min
G

λ ‖G−Fo‖
2

2
+

NW∑

i=1

‖Westimate −GRi‖
2

2
(17)

whose solution is given by the following:

Ĝ =

(

λFo +

NW∑

i=1

WestimateR
T
i

)(

λI+

NW∑

i=1

RiR
T
i

)
−1

(18)
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4. EXPERIMENTAL SETUP AND RESULTS

4.1. Description of Database and Algorithm implementation

For our ASR system, we use 8040 clean training files (containing
single and continuous digit utterances) provided in the Aurora 2.0
database training set to train a continuous digit recognizer in HTK
[9].

For the continuous digit recognition task, we take a random sub-
set of 4000 digit utterances from Test A, B and C giving us subway,
babble, car, exhibition, restaurant, street, airport, train station, sub-
way (MIRS), and street (MIRS) noise.

We train the ASR on MFCCs with the delta and delta-delta co-
efficients. We use 23 frequency bands (NB = 23), a hamming win-
dow size of 25 ms, and a frame shift of 10 ms. For the delta and
delta-delta coefficients, we set the respective parameters in HTK to
be equal to 2.

All algorithms are implemented in MATLAB.

4.2. Experimental Results

Table 1. Results for various levels of corruption.“CMN” refers to
Cepstral Mean Normalization. “EN Averaging” refers to the proce-
dure where the Elastic Net is applied to each window and contribu-
tions from the windows are subsequently averaged. “EN Coupled”
refers to the new procedure we described where a second optimiza-
tion formulation is employed to reconcile the predictions. Runtimes
are measured in seconds per optimization. Significance testing is
done at 95% confidence interval with the difference of proportions
test.

Algorithm Accuracies
(%) Runtimes Significant?

SNR 0 dB
Unimputed 9.63 NA NA

CMN 27.78 NA NA
EN Averaging 26.64 0.0158 NA
EN Coupled 40.39 0.0197 Yes

SNR 5 dB
Unimputed 36.78 NA NA

CMN 55.91 NA NA
EN Averaging 64.38 0.0209 NA
EN Coupled 72.57 0.0215 Yes

SNR 10 dB
Unimputed 61.41 NA NA

CMN 87.82 NA NA
EN Averaging 83.85 0.0296 NA
EN Coupled 89.99 0.0364 Yes

SNR 15 dB
Unimputed 81.99 NA NA

CMN 95.67 NA NA
EN Averaging 93.25 0.0409 NA
EN Coupled 95.84 0.0356 Yes

As shown in Table 1, we ran our experiments on a variety of
SNR levels, namely SNR 0 dB, 5 dB, 10 dB and 15 dB. We present
recognition results of the original noisy signal, the denoised version
using Elastic Net and simple averaging, and our newly proposed cou-
pled strategy (in the table as “EN Coupled”).

As evident from our results, the proposed strategy performs con-
sistently better than the simple averaging strategy. Moreover, from

our experiments, we see that the new strategy has generally com-
parable runtimes relative to the simple averaging method. As men-
tioned before, the main latency involved in our proposed method is
the time needed to invert the large square matrix λI+

∑NW

i=1
RiR

T
i .

Due to the fact that this matrix is block diagonal, the inversion is ef-
ficient compared to inverting a non block diagonal square matrix,
thus contributing to speedups needed to be comparable with simple
averaging.

5. CONCLUSION AND FUTURE WORK

We showed that a more tightly coupled optimization that integrates
the local optimization per window and the reconciliation step yields
improved results in general compared to the commonly adopted sim-
ple averaging strategy (7.67% improvement on average in recogni-
tion accuracies). Our formulation also retains the complexity sav-
ings of the Least Angle Regression implementation of the Elastic
Net, while speeding up the execution at the reconciliation step.

An immediate extension to the proposed scheme in this paper
will be to incorporate the global structure of the entire spectral image
into the optimization process. Currently, the sliding window frame-
work, while to a small extent is already doing so by utilizing the
overlapping portions, better targeted strategies could be developed.
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