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ABSTRACT
We investigate spectral envelope mapping problem with joint analy-
sis of throat- and acoustic-microphone recordings to enhance throat-
microphone speech. A new phone-dependent GMM-based spec-
tral envelope mapping scheme, which performs the minimum mean
square error (MMSE) estimation of the acoustic-microphone spec-
tral envelope, has been proposed. Experimental evaluations are per-
formed to compare the proposed mapping scheme to the state-of-the-
art GMM-based estimator using both objective and subjective eval-
uations. Objective evaluations are performed with the log-spectral
distortion (LSD) and the wideband perceptual evaluation of speech
quality (PESQ) metrics. Subjective evaluations are performed with
the A/B pair comparison listening test. Both objective and subjec-
tive evaluations yield that the proposed phone-dependent mapping
consistently improves performances over the state-of-the-art GMM
estimator.

Index Terms— throat-microphone, speech enhancement, spec-
tral envelope estimation

1. INTRODUCTION

Throat microphones capture speech signals in the form of vibrations
through skin-attached piezo-electric sensors. Hence, they capture
a lower bandwidth speech signal compared to acoustic-microphone
recordings. Throat-microphone recordings are significantly more ro-
bust to environmental noise conditions, however they suffer from the
perceived speech quality. Since throat-microphone recordings are
strongly robust and highly correlated with the acoustic speech signal,
they are attractive candidates for robust speech processing applica-
tions under adverse noise conditions, such as airplane, motorcycle,
military field, factory or street crowd environments.

The use of non-acoustic sensors in multi-sensory speech pro-
cessing has been studied for speech enhancement, robust speech
modeling and improved speech recognition [1, 2, 3, 4]. In one of
the early studies, throat- and acoustic-microphone speech recordings
were linearly combined to enhance a noisy speech signal for im-
proved speech recognition [5]. A device that combines a close-talk
and a bone-conductive microphone is proposed by the Microsoft re-
search group for speech detection using a moving-window histogram
[6]. Direct filtering, which is based on learning mappings in a max-
imum likelihood framework, is investigated in [7]. Later, direct fil-
tering is improved to deal with the environmental noise leakage into
the bone sensor and with the teethclack problem [8].

Multi-sensory speech processing for noisy speech enhancement
and improved noise robust speech recognition are discussed in [1,
9, 10]. In another multi-sensory study, speech recorded from throat
and acoustic channels is processed by parallel speech recognition
systems and later a decision fusion yields robust speech recognition
to background noise [11].

Graciarena et al. propose estimation of clean acoustic speech
features using the probabilistic optimum filter (POF) mapping with
combined throat and acoustic microphone recordings [12]. The POF
mapping is a piecewise linear transformation applied to noisy feature
space to estimate the clean feature space [13]. In [4], we develop a
framework to define a temporal correlation model between simul-
taneously recorded throat- and acoustic-microphone speech. The
resulting temporal correlation model is then employed to estimate
acoustic features, which are spectrally richer than throat features,
from throat features through linear prediction analysis. The throat
microphone features and the estimated acoustic features are then
used in a multimodal speech recognition system.

Non-acoustic sensors can reveal speech attributes that are lost in
the noisy acoustic signal such as, low-energy consonant voice bars,
nasality, and glottalized excitation. Quatieri et al. investigate meth-
ods of fusing non-acoustic low-frequency and pitch content with
acoustic-microphone content for low-rate coding of speech [2].

Although throat-microphone recordings are robust to acoustic
noise and reveal certain speech attributes, they often lack natural-
ness and intelligibility. There have been a few attempts in the lit-
erature that improve the perceived speech quality of non-acoustic
sensor recordings. A neural network based mapping of the speech
spectra from throat-microphone to acoustic-microphone recordings
has been investigated in [14]. Note that speech spectra mapping tech-
niques have been also studied extensively for the artificial bandwidth
extension of telephone speech [15, 16]. In another study [17], the
transfer characteristics of bone-conducted and acoustic-microphone
speech signals are modeled as dependent sources, and an equal-
izer, which is trained using simultaneously recorded acoustic and
bone-conducted microphone speech, has been investigated to en-
hance bone-conducted speech.

In this paper we target to enhance the naturalness and the
intelligibility of throat-microphone speech by mapping the throat-
microphone speech spectra closer to the acoustic-microphone speech
spectra with a speaker- and phone-dependent probabilistic estima-
tor, which is trained using simultaneously recorded acoustic- and
throat-microphone speech. The main contribution of this paper, over
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the state-of-the-art spectral mapping techniques that are investigated
in [14, 15, 16, 17], is the phone-dependent spectral mapping. We
observe significant improvements when the true phone-context is
available to the spectral mapping. Based on this observation, we
investigate phone-dependent spectral mapping in the presence of
predicted phone-context. The proposed throat-microphone speech
enhancement system is given in section 2. In section 3, experimental
evaluations and results are given. Finally, section 4 includes the
discussions and future research directions.

2. ENHANCEMENT OF THROAT-MICROPHONE SPEECH

Let us consider having two simultaneously recorded throat- and
acoustic-microphone speech recordings as sT [n] and sA[n], respec-
tively. Source-filter separation through the linear prediction filter
model of speech can be defined as,

ST (z) =
1

WT (z)
RT (z) (1)

SA(z) =
1

WA(z)
RA(z), (2)

where WT (z) and WA(z) are the inverse linear prediction filters,
and RT (z) and RA(z) are the source spectra for the throat- and
acoustic-microphone speech, respectively. Then we can define
the problem under investigation as finding a mapping from throat-
microphone spectra to acoustic-microphone spectra, such as,

ŴA(z) = ϕ(WT (z)|ΛTA), (3)

where ΛTA is a general correlation model of throat- and acoustic-
microphone speech, which can be extracted using a simultaneously
recorded training database. Replacing the throat-microphone speech
spectra with the estimated spectral envelope,

ŜA(z) =
1

ŴA(z)
RT (z), (4)

is expected to enhance the perceived quality of the throat-microphone
speech.

In this study, the line spectrum frequency (LSF) feature vector
representation of the linear prediction filter is used to model the spec-
tral envelope. The throat- and acoustic-microphone spectral repre-
sentations are extracted as 16th order linear prediction filters over
10 ms time frames. Let us define the elements of this representa-
tion at time frame k as column vectors xk and yk, respectively rep-
resenting the throat-microphone spectra as an observable source X
and acoustic-microphone spectra as a hidden source Y .

2.1. GMM-based Mapping

The Gaussian mixture model (GMM) estimator of [18] is a soft map-
ping from observable source X to hidden source Y with an optimal
linear transformation in the MMSE sense. It can be formulated as the
MMSE estimator, which is a soft mapping (SM) from the observable
source to the hidden source,

ŷsk =

L∑
l=1

p(γl|xk)[µy,l +Cyx,l(Cxx,l)
−1(xk − µx,l)], (5)

where γl is the l-th Gaussian mixture andL represents the total num-
ber of Gaussian mixtures. The vectorsµx,l andµy,l are respectively

the centroids for the l-th Gaussian for sources X and Y ,Cxx,l is the
covariance matrix of source X in the l-th Gaussian, and Cyx,l is
the cross-covariance matrix of sources X and Y for the l-th Gaus-
sian mixture. The probability of the l-th Gaussian mixture given the
observation xk is defined as the normalized Gaussian pdf as,

p(γl|xk) =
N (xk;µx,l,Cxx,l)∑L

m=1N (xk;µx,m,Cxx,m)
. (6)

The GMM estimator can also be formulated as a hard mapping
(HM) from the observable source X to the hidden source Y as,

ŷhk = p(γl∗ |xk)[µy,l∗ +Cyx,l∗(Cxx,l∗)−1(xk − µx,l∗)], (7)

where γl∗ represents the most likely mixture component, that is,

l∗ = arg max
l
p(γl|xk). (8)

2.2. Phone-Dependent Mapping

Throat-microphone recordings reveal certain speech attributes, and
deliver varying perceptual quality for different sound vocalizations,
such as, nasals, plosives, fricatives. Hence an acoustic phone-
dependent relationship between throat- and acoustic-microphone
speech can be formulated to value the attributes of the throat-
microphone speech. In order to explore such a relationship between
throat- and acoustic-microphone speech, we first define a phone-
dependent soft mapping (PDSM),

ŷ
s|c
k =

1

N

N∑
n=1

Ln∑
l=1

p(γcnl |xk)[µcny,l+C
cn
yx,l(C

cn
xx,l)

−1(xk−µcnx,l)],

(9)
where N is the number of phones and each phone cn has a sepa-
rate GMM, which is defined by phone-dependent mean vectors and
covariance matrices.

Furthermore, a phone-dependent hard mapping (PDHM) can be
defined as,

ŷ
h|c
k =

L∗∑
l=1

p(γc
∗
l |xk)[µc

∗
y,l +Cc∗

yx,l(C
c∗
xx,l)

−1(xk −µc
∗
x,l)], (10)

where c∗ is the given phone. In this study we consider three different
sources for the given phone. The true phone, cT , is defined as the
true phonetic class of the phone, which is considered as the most in-
formative upper bound for the phone-dependent model. Force align-
ment is used to extract the true phone source. The likely phone from
the GMM, cG, is defined as the most likely phonetic class, which
can be extracted as,

cG = arg max
cn
N (xk;µcnx,l,C

cn
xx,l). (11)

Finally, the likely phone from an HMM-based phoneme recognizer,
cM , is defined as the most likely phonetic class, which is decoded
by an HMM-based phoneme recognition over the observable source
X .

3. EXPERIMENTAL EVALUATIONS

We perform experiments on a synchronous throat and acoustic mi-
crophone database which consists of 799 sentences from one male
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Table 1. The Turkish METUbet phonetic alphabet with classifica-
tion into 8 phonetic attributes.

Back Vowels Stops Fricatives
AA anı B bal H hasta
A laf D dede J müjde
I ısı GG karga F fasıl
O soru G genç S ses
U kulak KK akıl SH aşı
Front Vowels K kedi VV var
E elma P ip V tavuk
EE dere T ütü Z azık
IY simit Liquids ZH yoz
OE örtü LL kul Affiricates
UE ümit L leylek C cam

Nasals RR Irmak CH seçim
M dam RH bir Glide
NN ani R raf Y yat
N süngü

speaker at 16-kHz sampling rate. At the training stage, codebooks
are established via varying number of Gaussian mixtures model us-
ing 720 recordings. The rest of our database are used for test stage.

The recordings are phonetically transcribed using the Turkish
phonetic dictionary METUbet [19], and the phone level alignment is
performed using force alignment and visual inspection. The METU-
bet phonetic alphabet is given in Table 1. As Salor et al. suggest in
[19], the Turkish phoneme GH, soft g, has not been used for tran-
scription and recognition, since it is used for lengthening of the pre-
vious vowel sound.

Evaluations of the spectral envelope estimation for the throat-
microphone speech enhancement are performed with two distinct
objective metrics, the logarithmic spectral distortion (LSD) and the
perceptual evaluation of wideband speech quality (PESQ) metrics.
The logarithmic spectral distortion (LSD) is a widely used metric
for speech spectral envelope quality assessment. The LSD metric
assesses the quality of the estimated spectral envelope with respect
to the original wideband spectral envelope, and is defined as

dLS =

√
1

2π

∫ π

−π

(
10 log

|WA(ω)|2

|ŴA(ω)|2

)2

dω, (12)

where WA(ω) and ŴA(ω) represent the original and estimated
acoustic spectral envelopes, respectively. The ITU-T Standard
PESQ [20] is employed as the second objective metric to evaluate
the perceptual quality of the enhanced throat-microphone speech
signal, which is constructed using the estimated spectral envelope
and the excitation signal of the throat-microphone speech.

3.1. Observations on Throat-Microphone Speech Attributes

The articulation of different phones come with its distinct charac-
ter in terms of resonance shaping. Although they differ in realiza-
tion across individual speakers, the tongue shape and positioning
in the oral cavity do not change significantly. Since, the throat-
microphone captures a reliable low-frequency energy, it represents

Table 2. The average LSD scores between throat- and acoustic-
microphone spectrums for different phonetic attributes with relative
occurrence frequencies in the test database.

Attribute Freq (%) LSD (dB)
Nasals 9.27 5.58
Stops 16.94 6.27
Liquids 9.59 7.05
Back Vowels 16.18 7.22
Front Vowels 13.93 7.65
Glide 2.36 7.81
Affiricate 2.72 9.54
Fricatives 11.10 11.81

low-frequency events, such as nasals and voice bars, sufficiently
well.

In Table 2 we collect the average LSD scores between the acous-
tic and throat spectral envelopes, respectively WA(ω) and WT (ω),
for the main phonetic attributes. The two lowest LSD scores occur
for the nasals and stops, and the fricatives yield the highest LSD
score. Note that nasals realized over closure of nasal cavity such
as /m/ have smallest distortion, and fricatives realized over the fric-
tion of narrow-stream turbulent air such as /s/ have largest distortion
due to its high-frequency energy. Clearly, the mapping of the throat-
microphone speech spectra to the acoustic-microphone speech spec-
tra is harder for the fricatives than for the nasals. That is one of the
main reasons that we investigate a phone-dependent mapping for the
enhancement of throat-microphone speech.

3.2. Objective Evaluations

In the test stage, the throat-microphone test recordings are separated
into sourceRT (z) and filterWT (z) through linear prediction analy-
sis. The estimated acoustic filter ŴA(z) is extracted from the throat
filter WT (z) using different mapping schemes. Then the enhanced
throat-microphone recordings are synthesized using the estimated
filter ŴA(z) and the source RT (z).

Table 3. The average LSD and PESQ scores for different mapping
schemes for enhancement of the throat-microphone recordings.

LSD PESQ
(dB) (MOS-LQO)

PDHM-G 3.92 1.27
HM 3.80 1.29
SM 3.66 1.34

PDSM 3.65 1.36
PDHM-M 3.48 1.38
PDHM-T 3.18 1.43

Table 3 presents the average LSD scores between the estimated
filter ŴA(z) and the original acoustic filter WA(z), and the aver-
age PESQ scores between the enhanced throat-microphone record-
ings and the original acoustic-microphone recordings. Note that for
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the increasing PESQ scores the LSD scores decrease in a consis-
tent manner. The phone-dependent number of mixture components
for the phone-dependent hard and soft mapping schemes are set as
Ln = 16 for all phones. Similarly the number of mixture com-
ponents for the GMM based hard and soft mapping schemes is set
as L = 256. The worst performing mapping scheme is observed
as the phone-dependent hard mapping when phone recognition is
performed with the GMM classifier (PDHM-G). This is mainly due
to the poor phone recognition performance of the GMM classifier,
which attains 31.94% correct phone recognition in the test database.
The soft mapping scheme SM has a performance improvement over
the hard mapping scheme HM. The phone-dependent soft mapping
(PDSM) performs close to the soft mapping (SM) scheme. The
best LSD and PESQ scores are attained with the phone-dependent
hard mapping when the true phone class is known (PDHM-T). The
phone-dependent hard mapping with the HMM-based phone recog-
nition (PDHM-M) attains a performance improvement and performs
closest to the PDHM-T mapping scheme. The HMM-based phone
recognition for the PDHM-M mapping is performed with 3-state and
256-mixture density phone level HMM recognizer, which is trained
over the throat-microphone recordings of the 11 male speakers of the
TAM database in [4]. Note that the test recordings in this study have
been excluded from the training set of the phone level HMM rec-
ognizer. The HMM-based phone recognizer attains 62.22% correct
phone recognition over the test database.

We observe significant performance improvement when the true
phone class is known to the phone-dependent hard mapping (PDHM-
T) scheme. Furthermore the phone-dependent hard mapping with
a reliable phone recognition, in this case the PDHM-M mapping,
attains the best blind estimation for the spectral envelope to enhance
the throat-microphone recordings.

The throat-microphone recordings have a lower bandwidth at
low-frequency bands compared to the reference acoustic-microphone
recordings. Since the perceived intelligibility is poor for the throat-
microphone recordings, the average PESQ scores stay at low values.
In order to isolate the degradation, which is introduced by the throat
source RT (z), we consider the case with the acoustic source RA(z)
and throat filter WT (z) as a degraded speech signal. In this case
we synthesized an enhanced speech signal using the estimated filter
ŴA(z) and the acoustic source RA(z). Table 4 presents the average
PESQ scores for this investigation. Note that the PESQ scores are
higher compared to Table 3. Furthermore the phone-dependent hard
mapping PDHM-M scheme has the highest PESQ improvement.

Table 4. The average PESQ scores for different mapping schemes
using acoustic residual.

PESQ
(MOS-LQO)

PDHM-G 1.66
HM 1.75
SM 1.97

PDSM 2.02
PDHM-M 2.16
PDHM-T 2.53

3.3. Subjective Evaluations

Since the reported PESQ scores stay at low values, a subjective eval-
uation of the proposed throat-microphone speech enhancement tech-
niques is necessary to check whether the objective score improve-
ments are subjectively perceivable. We performed a subjective A/B
comparison test to evaluate the proposed enhancement techniques.
During the test, the subjects are asked to indicate their preference for
each given A/B test pair of sentences on a scale of (-2; -1; 0; 1; 2),
where the scale corresponds to strongly prefer A, prefer A, no pref-
erence, prefer B, and strongly prefer B, respectively. The subjective
A/B test includes 21 listeners, who compared 20 sentence pairs ran-
domly chosen from our test database to evaluate 5 conditions. The
acoustic-microphone speech condition is compared to all conditions
with 1 pair. The throat-microphone speech condition is compared to
all three enhancement schemes with 2 pairs. The GMM-based soft
mapping scheme is compared to the phone-dependent hard mapping
schemes PDHM-T and PDHM-M with 3 pairs. Finally, the PDHM-T
scheme is compared to the PDHM-M scheme with 3 pairs.

Table 5 presents the average subjective preference results. The
rows and the columns of Table 5 correspond to A and B conditions of
the A/B pairs, respectively. Also, the average preference scores that
tend to favor B are given in bold to ease visual inspection. Speech
samples from the subjective A/B comparison test are available for
online demonstration [21].

All the three enhancement schemes yield a perceivable differ-
ence compared to the throat-microphone speech. Among the three
enhancement schemes, the PDHM-T, which uses the true phone
class, has the highest perceivable improvement. The proposed
PDHM-M scheme has the second best perceivable improvement,
which is inline with the objective evaluations.

Table 5. The average preference results of the subjective A/B pair
comparison test.

HHHHA
B A T SM PDHM-T PDHM-M

Acoustic 0.048 -1.929 -1.929 -1.833 -1.833
Throat 0.571 1.119 0.833

SM 0.492 0.270
PDHM-T -0.540

4. CONCLUSIONS

We introduce a new phone-dependent GMM-based spectral envelope
mapping scheme to enhance throat-microphone speech using joint
analysis of throat- and acoustic-microphone recordings. The pro-
posed spectral mapping scheme performs the minimum mean square
error (MMSE) estimation of the acoustic-microphone spectral enve-
lope within the phone class neighborhoods. Objective and subjective
experimental evaluations indicate that the phone-dependent spectral
mapping yields perceivable improvements over the state-of-the-art
phone independent mapping schemes. Overall, the proposed phone-
dependent spectral mapping PDHM-M introduces a significant in-
telligibility improvement over the throat-microphone speech. How-
ever, there is still a big room to further improve the perceive quality
by modeling the source excitation signal of the throat-microphone
recordings.
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