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ABSTRACT

In this paper, we show a method that significantly improved
our previous work in single-channel dereverberation. The proposed
method is more robust to changes in speaker position in distant-
talking ASR. First, we update the room transfer function (RTF) and
weighting parameters for dereverberation to the target speaker po-
sition. This scheme corrects speech power variation as a function
of position in the waveform level. Consequently, its impact to the
acoustic model is verified. Then, we implement a fast acoustic model
update reflective of the speech power level of the target speaker po-
sition. Furthermore, the scheme in updating the model is simple and
precludes time-consuming model re-estimation. As a result, the pro-
posed method can be executed online. The synergy of these correc-
tive measures significantly minimizes the mismatch between training
and testing conditions. We test our method using real reverberant
data with different locations inside the room. Experimental results
show that the proposed method outperforms the conventional meth-
ods in terms of ASR performance. Moreover, our fast acoustic model
update scheme is at par in terms of recognition performance against
time-consuming model re-estimation.

Index Terms— Speech Enhancement, Dereverberation, Robust-
ness, Automatic Speech Recognition

1. INTRODUCTION

Distant-talking ASR in an enclosed reverberant environment is a dif-
ficult task. Smearing effect of reverberation causes mismatch to the
clean speech. Moreover, the dynamic change of reverberation due
to a change in speaker position causes a mismatch in speech power
level. The combined effects of mismatch is detrimental to the ASR
performance. Although the effects of reverberation can be mitigated
through signal processing (i.e., dereverberation), the latter is mostly
addressed by matching the acoustic model with the actual condi-
tion of the processed data (e.g. same location) through re-training or
adaptation [1]. Due to multiple location points, it is not practical to
re-train corresponding models. Blind dereverberation method [2][3]
is a good candidate for robust dereverberation in the waveform level.
However, it is not immune to model mismatch when used in ASR.

In general, distant-talking ASR application involves microphone
array processing. And when the array architecture precludes the as-
sumption of free space (i.e. circular arrays mounted on robot heads),
room transfer functions (RTFs) are needed for effective localization
and separation of speech. In such applications, RTFs are readily
available through measurements and estimation. Thus, it is practical
to utilize these RTFs for improved speech enhancement (i.e., addi-
tional input for dereverberation).

In our previous works [4][5] we addressed the problem of dere-
verberation by removing the effects of late reflection through spec-

Fig. 1. Dereverberation based on spectral subtraction.

tral subtraction (SS) [4][5] and expanded to Wiener filtering [6].
Previously, dereverberation parameters are frozen during the design
phase which may be different during testing. The RTF estimation
scheme [7] is previously based on crude assumptions and cannot
handle rooms with occlusions. In addition, [4][5] is designed for
single channel application. Thus, it is very sensitive to changes in
speaker location due to the volatility in speech power. Moreover, the
previous work focuses only in the waveform level, void of acoustic
model compensation scheme.

In this paper, we will show a method that takes advantage of the
RTF estimation to improve dereverberation performance for distant-
talking ASR. The RTF contains information concerning room prop-
erties (i.e. reflection of sounds, reverberation time, etc.). In short,
it captures most of the acoustical dynamics in an enclosed environ-
ment. First, the RTF is updated online and then utilized for weight-
ing parameters update, reflective of the target speaker’s position.
When used in conjunction with the dereverberation scheme in [4][5],
the power level mismatch caused by the change in speaker-location
is minimized in the waveform level. Second, we show a scheme for
acoustic model update that links the waveform-level processing to
the acoustic model, which is the heart of the ASR. Thus, reciprocat-
ing the minimization of mismatch in the acoustic model without re-
training or collecting adaptation data. The organization of the paper
is as follows; We introduce the background in Section 2. In Section
3, we show the method of RTF and weighting parameters update for
effective dereverberation, followed by the fast acoustic model update
scheme in Section 4. In Section 5, we discuss the experimental set-
up, together with the recognition results using real reverberant data
in Section 6. We will conclude this paper in Section 7.

2. BACKGROUND

Reverberant speech model adopted in [8][9] can be expressed as

r(ω) = AE(ω)c(ω) +AL(ω)c(ω)
= e(ω) + l(ω)

(1)

where r(ω) is the observed reverberant signal, c(ω) is the clean
speech, AE(ω) and AL(ω) are the early and late reflection com-
ponents of the full RTF A(ω). The boundary is experimentally pre-
determined in [4][5]. r(ω) can be treated as the superposition of
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e(ω) and l(ω), known as the early and late reflection, respectively.
In [4][5] we treat l(ω) as long-period noise which harms the ASR
performance. Dereverberation is performed by suppressing l(ω) and
recovering e(ω) estimate. The latter is further processed with Cep-
strum Mean Normalization (CMN) during ASR. Eq. (1) simplifies
dereverberation into a denoising problem, and through spectral sub-
traction (SS) [10], the estimate ê(ω) in frame-wise manner t is given
as

|e(ω, t)|2 =


|r(ω, t)|2 − |l(ω, t)|2

if |r(ω, t)|2 − |l(ω, t)|2 > 0

β|r(ω, t)|2 otherwise.

(2)

where β is the flooring coefficient. In real condition, l(ω, t) is
unavailable, precluding the power estimate |l(ω, t)|2. A scheme
in[4][5] shows a workaround to this problem, approximating l(ω, t)
directly from the observed reverberant signal r(ω, t) through the
error

Em =
1

T

∑
t

∑
δb∈Bm

|l(ω, t)− δb(ω, t)r(ω, t)|2. (3)

For the given set of bands BBB = {B1, . . . , BM}, the weighting pa-
rameter δb is determined through minimum mean square error crite-
rion in Eq. (3) via offline training. The new estimate ê(ω) through
the modified SS becomes

|e(ω, t)|2 =


|r(ω, t)|2 − δb|r(ω, t)|2

if |r(ω, t)|2 − δb|r(ω, t)|2 > 0

β|r(ω, t)|2 otherwise.

(4)

The multi-band treatment improves error minimization as opposed
to single-band [4][5]. Fig. 1 shows the adopted dereverberation
scheme [4][5] (frame-wise processing is assumed, hence variable
t is dropped from the figure). In the offline mode, r(ω) and the
late reflection l(ω) are generated. The scheme in obtaining the
RTF A(ω) and its late reflection components AL(ω) is described
in [4][5]. Then, multi-band weighting parameters δb are obtained
through MMSE criterion (see Eq. (3)). In the actual dereverberation,
δb obtained during offline training is used in conjunction with the
modified SS in Eq. (4).

The method in [4][5] uses a pre-defined A(ω) for all positions
inside the room and it suffers from robustness issues during actual
run-time when speaker changes position away from the mic-array.
In our proposed method, this is mitigated through a series of pa-
rameter updates for effective dereverberation in the waveform level.
Furthermore, the acoustic model is also updated in conjunction with
the updated waveform processing.

3. DEREVERBERATION PARAMETERS UPDATE

In Fig. 2, mic array processing using a hybrid algorithm of beam-
forming and blind separation called Geometrically constrained
High-order Decorrelation based Source Separation (GHDSS) [11]
[12] is employed resulting to r(ω). The rest of the processes are
discussed below

3.1. RTF Curve Fitting

To simplify the RTF update through curve fitting, we assume that
(a) the phase of the RTF does not change as a function of the pos-
sible speaker locations inside the room; and (b) the amplitude of
the updated RTF decays exponentially as a function of distance. Let
A(ω, d) denotes an arbitrary pre-measured RTF of known distance d
between the mic-array and sound sources. The updated RTF Â(ω, d̂)

at target location d̂ is given as

Fig. 2. Block diagram of parameters update for effective dereverber-
ation

Â(ω, d̂) = f(d̂)A(ω, d) , (5)
where f(d̂) ∈ R is the exponential gain function of d̂ and is obtained
as a priori information based on a nonlinear curve fitting using lim-
ited number of measured RTFs. Specifically,

f(d̂) =
α1

d̂
+ α2, (6)

where α1 and α2 are the estimated fitting parameters. The steps for
the radial distance update are as follows:

1) Pre-measurement of a limited number id RTFs A(ω, d[i])
from different d[i] points. These are readily available during
mic-array processing (i.e. sound separation) in [11].

2) Obtain mean amplitude of RTFs over frequency bins by

Ā(d[i]) =
1

ph − pl + 1

ph∑
p=pl

∣∣A(ω[p], d[i])
∣∣ , (7)

where ph and pl are the indices for maximum and minimum
frequency, respectively.

3) Obtain α1 and α2 through nonlinear curve fitting:

F x =


1
d[1]

1

...
...

1
d[id]

1

 ,F y =

 Ā(d[1])
...

Ā(d[id])

 ,
[α1, α2]T =

(
F Ty F y

)−1

F Ty F x (8)

4) Select an arbitrary A(ω, d) from step (1). Substitute values
of α1 and α2 in step (3) to Eq. (6) and proceed to Eq. (5).

Fig. 3 shows that both assumptions (a) and (b) above are sat-
isfied. On the top figure, it is observed that distance update (for 9
different points d=0.5-d=2.5) only scales the amplitude of the mean
power spectrum. More importantly, the phase remains unchanged
(i.e. responses becomes zero at around 100th frame). In addition,
the bottom figure shows an exponential decay of f(d̂) which fits the
amplitude of the measured points, confirming the validity of the non-
linear fitting.

3.2. Weighting Parameters Update
Prior to the actual weighting parameter update, several Â(ω, d̂) are
synthetically generated for different values of d̂ as described in Sec
3.1. Then, weighting parameters δb for BBB = {B1, . . . , BM} are
computed for each of the Â(ω, d̂) in the same manner as discussed in
Sec. 2 (i.e., left of Fig. 1), and these values are kept in the database.
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Fig. 3. Validity of the assumptions for effective RTF update.

During online testing, the RTF is updated for a given test speaker’s
target position d̂. A simple waveform matching of the RTF update
against the RTFs in the database is performed and the corresponding
weighting parameter δ̂b of the best matched RTF is selected.

4. ASR ACOUSTIC MODEL UPDATE

Mismatch exists when using a model trained with a close-talking
clean speech data λ(c) against the enhanced (dereverberated) speech
for testing. Thus, model re-training or adaptation using the enhanced
speech is usually implemented. Due to many possible location
points, time and data issues, re-training becomes impractical. We
note that mismatch caused by the change in speech power is differ-
ent from the mismatch caused by speaker variation or environment
conditions. The former maybe simpler to address without the need
for re-estimation or adaptation. We investigate the model parame-
ters as a function of distance between the speaker and the mic-array.
Consequently, we verify the impact of the change in speech power
to the model parameters.

Distant-talking training data from an arbitrary location d is en-
hanced (with CMN processing) and used to train the acoustic model
λ(d). Upon completion of the Expectation Maximization cycle, λ(d)

has the following parameters :

C
(d)
im =

L
(d)
im∑M

m=1
L
(d)
im

, (9)

µ
(d)
im =

m
(d)
im

L
(d)
im

, (10)

Σ
(d)
im =

v
(d)
im

L
(d)
im

− µ(d)
imµ

(d)
im

T
, (11)

a
(d)
ij =

L
(d)
ij∑J

j=1
L

(d)
ij

, (12)

where C
(d)
im , µ(d)

im , Σ
(d)
im , and a(d)ij are the mixture weight, mean, co-

variance matrix and updated transition probability respectively. m
denotes the mixture while i and j signify the state (i is the current
state). The statisticsL(d)

im ,L(d)
ij ,m(d)

im , v(d)
im are the accumulated mix-

ture occupancy, state transition occupancy, mean statistics and vari-
ance statistics, respectively. In our investigation, we have verified
that the values of L(d)

im , L(d)
ij ,m(d)

im , v(d)
im are affected by the distance

d. Specifically, these parameters increase in value as the power level
increases (speaker is close to the mic-array). To control these values,

Fig. 4. Effects of distance (i.e., speech power variation) to the model.

we propose the interpolation of the statistics in λ(c), a model trained
from the close-talking clean data with the statistics from λ(d). The
effects of this are two-folds, first, it shifts the original values of the
L

(d)
im , L(d)

ij , m(d)
im , v(d)im to the desired values of the target distance d̂

through interpolation. Second, the close-distant talking model λ(c),
due to its ”completeness” may fill the gaps of the incomplete data for
λ(d). Note that due to power level issues, training may not be robust
in λ(d). The updated parameters of λ̂ are

Ĉim =
L

(d)
im + τ (d̂)L

(c)
im∑M

m=1
L
(d)
im + τ (d̂)L

(c)
im

, (13)

µ̂im =
m

(d)
im + τ (d̂)m

(c)
im

L
(d)
im + τ (d̂)L

(c)
im

, (14)

Σ̂im =
v
(d)
im + τ (d̂)v

(c)
im

L
(d)
im + τ (d̂)L

(c)
im

− µ(d)
imµ

(d)
im

T
, (15)

âij =
L

(d)
ij + τ (d̂)L

(c)
ij∑J

j=1
L

(d)
ij + τ (d̂)L

(c)
ij

, (16)

where L(c)
im, L(c)

ij , m(c)
im, v(c)

im are the statistics of λ(c). τ (d̂) is the
interpolation constant for target distance d̂ used to control the value.

In Fig. 4, we pool all the model mixtures (horizontal axis) and
plot the mixture component occupancy (vertical axis) for the close-
talking clean speech and the distant-talking speech (d= 1.0m, 1.5m,
2.0m and 2.5m ) enhanced in the same manner in Fig.1(right) with
CMN. The plot is distinct of the different envelope amplitudes that
manifest the impact of the mismatch as a function of the speech
power (i.e. due to distance). By inspection, mismatch can be mini-
mized by shifting an envelope amplitude to a target level. Suppose
that d=2.5m has the corresponding model λ(2.5m) and the target
speaker is located at d̂=1.5m. In the same figure, we show that the
interpolation of the clean model using τ (1.5m) shifts the original en-
velope level from d=2.5m closer to d=1.5m.

5. EXPERIMENTAL SET-UP

The training database is from the Japanese Newspaper Article Sen-
tence (JNAS) corpus. The open test set is composed of 200 utter-
ances coming from 24 speakers. Recognition experiments are car-
ried out on the Japanese dictation task with 20K-word vocabulary.
The language model is a standard word trigram model. The acoustic
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Table 1. Word accuracy (%) averaged over 10 mic-array positions in each room (AAA-EEE use close-talking clean speech model).
Room 1: T60= 240 ms. Room 2: T60= 640 ms.

Methods 1.0 m 1.5 m 2.0m 2.5 m 1.0 m 1.5 m 2.0 m 2.5 m
A.A.A. Unprocessed 72.3% 56.5% 34.3% 19.1% 14.2% -1.0% -10.0% -22.3%
B.B.B. Blind Dereverberation [2] 74.1% 63.3% 47.0% 35.4% 31.6% 17.8% 8.0% 1.0%
C.C.C. Spectral Subtraction SS (Previous work [4][5]) 76.1%76.1%76.1% 69.3%69.3%69.3% 53.4%53.4%53.4% 44.6%44.6%44.6% 36.0%36.0%36.0% 24.1%24.1%24.1% 14.5%14.5%14.5% 5.7%5.7%5.7%
D.D.D. SS + RTF Upd: Sec 3 77.2% 71.0% 55.9% 47.7% 39.3% 28.2% 19.8% 11.5%
E.E.E. SS + RTF Upd: Meas. RTF 77.5% 71.4% 56.2% 47.9% 39.5% 28.4% 19.9% 11.8%
F.F.F. SS + RTF Upd: Sec 3 + Model Upd: Sec 4 (Proposed) 79.0%79.0%79.0% 74.1%74.1%74.1% 60.5%60.5%60.5% 54.0%54.0%54.0% 46.2%46.2%46.2% 38.3%38.3%38.3% 34.8%34.8%34.8% 27.1%27.1%27.1%
G.G.G. SS + RTF Upd: Sec 3 + Model Upd: Re-train (Upper limit) 79.6% 74.9% 61.3% 55.2% 46.8% 39.1% 35.7% 28.2%

Fig. 5. Performance comparison between re-training and model update (Averaged for all d[i] = {1.0m, 1.5m, 2.0m, 2.5m}).

model is a phonetically tied mixture (PTM) HMMs with 8256 Gaus-
sians in total. The microphone array is embedded on the head of the
robot. In the experiment, we used different occlusions such as table,
chairs, etc. (real environment setting).

Real reverberant data are recorded inside two different reverber-
ant rooms (Room 1 and Room 2) with reverberation time T60=240
ms. and T60=640 ms., respectively. The mic-array is set-up into ten
different positions in each room. For each mic-array position, four
location points d[i] = {1.0m, 1.5m, 2.0m, 2.5m}, 1 ≤ i ≤ id = 4
are designated for testing. Each test location point consists of 200
test utterances. In this experiment id=3 is sufficient for step (1) in
Sec. 3.1 (i.e. we used 0.5m, 1.3m and 3.0m which are different from
the ones used for testing). We also note that a single f(d̂) in Eq.
(6) is sufficient for the ten different mic-array set-up inside the room
used to collect test data.

6. ASR RECOGNITION RESULTS

In Table I, (A)-(E) methods use close-talking clean speech acoustic
model for ASR. (A) is the performance when the reverberant test
data are not processed (no enhancement). (B) is the performance
using a blind dereverberation method that does not require any RTF
estimation to carry out dereverberation [2]. (C) is the performance
when using the SS-based dereverberation [4][5] (no RTF or model
updates to compensate for the change in speaker position). (D) is
the result when RTF is updated using the scheme in Sec 3. (E) is
the same as (D) except that the actual measured RTF is used instead
of the scheme in Sec. 3. (F) is when both the RTF in Sec. 3 and
model update in Sec. 4 are employed in the SS-based dereverbera-
tion (proposed). Lastly, (G) is the result when model re-training is
used instead of the scheme in Sec. 4 (close-talking clean model is
re-trained with the processed data matched at location d ).

Blind dereverberation (B) outperforms the unprocessed data
(A). We note that (B) operates blindly (no RTF is required). (C)
performs better than (B) due to the RTF information and some op-
timization [5]. It is confirmed in (D) that the RTF update in Sec.
3 outperforms (C). We also note that there is no significant benefit
in using the actual measured RTF in (E) when compared to (D).

This means that RTF update discussed in Sec 3 is sufficient for
ASR application. This is also validated in [13], where it is claimed
that accurate RTF estimation for speech modelled by HMM is not
necessary due to the loose representation of speech in the HMM
(i.e., mixtures of gaussians). In (F) where both RTF and model
updates are in effect, the recognition performance is superior than
the existing methods (B) and (C). Furthermore, in this table, it is
shown that there is insignificant change in performance when using
model retraining (G) as opposed to the fast model update in Sec. 4
(F).

In Fig. 5 we show the performance of the methods in Table 1
(i.e., (A), (B), (C) and (D)) when re-training is employed (i.e., the
close-talking clean speech model used in Table 1 is re-trained using
the processed speech database matching the correct d ). It is ap-
parent that even with re-training: A (Re-train), B (Re-train), and C
(Re-train), these methods cannot beat the proposed method in (F).
D (Re-train) in Fig. 5 is equivalent to (G) in Table 1. D (Re-train) is
only slightly better than the proposed method in (F) but it requires
time-consuming re-estimation and cannot be executed online. In our
experiment, we only show the results of model re-training and ex-
cluded the results for model adaptation since we have access to the
training data. Model re-training is better than adaptation. Thus, its
result serves as the baseline.

It is important to stress that ASR in very reverberant condition
is a very difficult task. Consequently, distant-talking ASR with test
speakers located more than 1 meter distance away from the mic-
array is proven to be a herculian task. Experimental results under
these severe conditions provided in Table 1 are for scientific evalua-
tion only.

7. CONCLUSION

We have presented a series of corrective schemes that update the pa-
rameters used in dereverberation and in the acoustic model. In effect,
we have improved our previous work in dereverberation, robust to
the variation in speaker location in distant-talking ASR. By address-
ing both the effects in the waveform and acoustic model, we have
shown that robustness is better achieved when both are combined.
In our future works, we will further investigate the synergy between
these two for improved performance in distant-talking ASR.
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