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ABSTRACT
Mask-based objective speech-intelligibility measures have
been successfully proposed for evaluating the performance of
binary masking algorithms. These objective measures were
computed directly by comparing the estimated binary mask
against the ground truth ideal binary mask (IdBM). Most
of these objective measures, however, assign equal weight
to all time-frequency (T-F) units. In this study, we propose
to improve the existing mask-based objective measures by
weighting each T-F unit according to its target or masker
loudness. The proposed objective measure shows signifi-
cantly better performance than two other existing mask-based
objective measures.

Index Terms— Speech intelligibility, objective measure,
ideal binary mask, speech separation

1. INTRODUCTION

Understanding speech in the presence of background noise
is one of the most challenging tasks for listeners with hear-
ing loss. Recent studies have shown that speech separation
techniques based on the concept of ideal binary mask has
the potential for restoring intelligibility of speech corrupted
by competing noise both for normal hearing and hearing im-
paired persons [1, 2, 3, 4].

Binary masking is a strategy for applying binary gains on
a T-F representation. Ideal binary mask (IdBM) was defined
by comparing the local signal-to-noise ratio (SNR) of each T-
F unit against a fixed threshold [1]. T-F units with local SNR
higher than the threshold are defined as target-dominated T-
F units and are kept, while others as masker-dominated T-F
units and are discarded.

Motivated by the above studies, increasing effort has been
put on designing algorithms that could accurately predict the
IdBM [5, 6, 7, 8]. Objective metrics for evaluating the perfor-
mance of these binary masking algorithms are of great inter-
est, since subjective tests can be time-consuming [5, 9, 10].

Mask-based objective speech-intelligibility measures
such as hit rate minus false alarm rate (HIT-FA) [5] and

ideal binary mask ratio (IBMR) [9] were proposed and fre-
quently used as metrics to evaluate the performance of binary
masking techniques. Those mask-based objective intelligibil-
ity measures are often obtained by counting the mismatched
T-F units between estimated binary mask and IdBM. Since
the calculation of mask-based objective measures does not
require the resynthesized output, they are robust to many
convolutional distortions that are not generated by the binary
masking algorithm itself [9]. While those measures have
been shown to have modestly high correlation with subjec-
tive scores, in its calculation the contribution of individual
T-F units are equally weighted. However, it turns out that
mask errors localized in louder T-F units are more harmful
to speech intelligibility than those in quieter T-F units (see
Fig. 2).

In this study, we propose a new mask-based objective in-
telligibility measure, loudness weighted hit-false (LWHF), in
which each T-F unit is weighted according to the loudness of
its target or masker content.

2. LOUDNESS WEIGHTED HIT-FALSE MEASURE

In order to associate the appropriate weight to each T-F unit,
we categorize T-F units into two classes: target-present T-F
units and target-absent T-F units as in [2]. A previous study
[2] has demonstrated that target-present T-F units have dif-
ferential contributions to speech intelligibility compared to
target-absent T-F units. In particular, target-present T-F units
have a positive contribution to speech intelligibility, while
target-absent T-F units incline to distort speech intelligibil-
ity. It could be further expected that the positive contribution
of target-present T-F units comes from the underlying target
component, while the negative contribution of target-absent
T-F units is caused by its masker component. In addition, we
will define mask errors occurring in target-present T-F units
as miss errors and those occurring in target-absent T-F units
as false alarm error. Finally, in our proposed method, miss
errors are weighted according to the loudness degree of its
target component, while false alarm errors are weighted ac-
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cording to the loudness degree of its masker content.

2.1. Loudness Spectrogram Computation

Let Y(n) = X(n) + d(n) be the mixture signal, with X(n)
denoting the target signal and d(n) denoting the masker sig-
nal. Signals (Y(n), X(n) and d(n)) are first segmented in
time using Hamming window (20ms) with 50% overlap be-
tween segments. A fast Fourier transform (FFT) is then ap-
plied to each segment. T-F analyzed signals (Y(t, f),X(t, f)
and d(t, f)) are pre-emphasized by an equal-loudness curve,
simulating the perceptual sensitivity of the human ear to the
intensity of sound at different frequency locations [11].

Y(t, f) = Y(t, f)E(f) (1)

X(t, f) = X(t, f)E(f) (2)

d(t, f) = d(t, f)E(f) (3)

E(f) is an approximation of equal loudness contour (valid up
to 5000 Hz) and is given by

E(f) =
[(f2 + 56.8× 106)f4]

[(f2 + 6.3× 106)2 × (f2 + 0.38× 109)
. (4)

After multiplying by the equal-loudness contour, the loudness
spectrogram is calculated by applying a cubic root amplitude
compression [11].

LY(t, f) = (Y(t, f))0.33, (5)

LX(t, f) = (X(t, f))0.33, (6)

Ld(t, f) = (d(t, f))0.33 (7)

where LY(t, f),LX(t, f), and Ld(t, f) indicate the loudness
spectrogram of the mixture, target and masker signals, respec-
tively.

2.2. Loudness weighted miss error

The loudness weighted miss error (T1) of the binary masked
speech is defined as follows:

T1 =
∑

µ(t, f)×MISS(t, f), (8)

where MISS(t, f) is the binary indication of miss error of each
T-F unit, and µ(t, f) is weight value associated with each miss
error. Since miss errors occur only in target-present T-F units,
µ(t, f) is related to the loudness of the local target component.
Thus, we define µ(t, f) as follows:

µ(t, f) = g(LX(t, f)), (9)

where g(�) is a sigmoid function for mapping each target-
present T-F unit to the perceptual weight according to its tar-
get loudness,

g(x) =
1

1 + exp(α1(x− β1))
. (10)

Values of α1 = −10 and β1 = 0.7 yielded the best correlation
for our test material.

2.3. Loudness weighted false alarm error

The loudness weighted false alarm error (T2) of the binary
masked speech is defined as follows:

T2 =
∑

ν(t, f)× FA(t, f), (11)

where FA(t, f) is the binary indication of false alarm error of
each T-F unit, and ν(t, f) is the weight value associated with
each false alarm error . Since false alarm errors occur only
in target-absent T-F units, ν(t, f) is related to the loudness of
local masker component. Thus, we define ν(t, f) as follows:

ν(t, f) = h(Ld(t, f)), (12)

where h(�) is a sigmoid function used for mapping each
speech-absent T-F units to perceptual weight according to its
masker loudness,

h(x) =
1

1 + exp(α2(x− β2))
. (13)

Values of α2 = −10 and β2 = 0.8 yielded best correlation for
our test material.

2.4. Proposed objective intelligibility measure

In order to incorporate the perceptual effect of miss errors
and false alarm errors on speech intelligibility simultaneously,
we propose a new objective intelligibility measure for binary
masked speech called Loudness weighted Hit-False (LWHF)
as an improvement over the previous HF measure. LWHF is
defined as follows:

LWHF =
T− T1 − T2

T
, (14)

where T indicates the loudness weighted sum of target-
present T-F units, and

T =
∑

µ(t, f)× LX(t, f). (15)

3. EVALUATION AND COMPARISON

3.1. Subjective data

Speech sentences were taken from the IEEE database (1969).
A 20-talker simulated babble noise was used as the masker
to corrupt the sentences at -5 dB SNR. For each sentence, we
separate T-F units into two classes, target-present and target-
absent T-F units, and compute IdBM as in [2].

Target-present T-F units are further categorized into four
groups L1, L2, L3 and L4, by increasing target loudness.
Each group includes a fixed percentage of the target-present
T-F units. For example, L1 consists of the target-present T-F
units having target loudness in the lowest level, while L4 con-
sists of the target-present T-F units having target loudness in
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Fig. 1. The left column shows spectrograms of sentences
synthesized from four new binary masks derived by masking
target-absent T-F units belonging to T1, T2, T3 and T4, respec-
tively from top to bottom. The right column shows the spec-
trograms of the same sentences synthesized from new binary
masks derived by masking target-present T-F units belonging
to L1, L2, L3 and L4, respectively from top to bottom.

the highest level. Similarly, we also categorized target-absent
T-F units into another four groups T1, T2, T3 and T4, but ac-
cording to masker loudness.

Next we introduces mask errors to all T-F units of a given
loudness group, while no errors were introduced to other T-F
units. We repeated this process separately for each of above
eight groups, L1, L2, L3, L4, T1, T2, T3 and T4, to cre-
ate eight new binary masks. Since each of the four target-
present groups contains the same number of T-F units, the
new derived binary masks have the same miss error rate, but
concentrated asymmetrically in T-F units belongs to different
loudness levels. Similarly, the four new binary masks derived
from four target-absent groups have the same false alarm rate,
but concentrated asymmetrically in T-F units belongs to dif-
ferent loudness levels. The eight new derived binary masks
were applied to mixture signals to produce stimuli for our test.
Fig. 1 shows an example of the stimuli spectrograms.

For the listening experiments, eight normal-hearing lis-
teners participated in the experiments. The participants were
all native speakers of American English. Subjects participated
in a total of 8 conditions (=4 target-present groups+ 4 target-
absent groups). Each condition used two lists of non-repeated
sentences (i.e., 20 sentences). The order of the test conditions
was produced randomly for each subjects.

3.2. Results and discussion

In order to evaluate the proposed method, we compare it
against two other existing mask-based objective measures,
HIT-FA and IBMR, based on the stimuli produced previ-
ously. Results are shown in Fig. 2.

The first column of Fig. 2 indicates the average subjec-
tive listening scores on stimuli from the 8 different conditions
outlined in Sec.3.1. Minor degradation in the intelligibility is
observed when mask errors were introduced to target-present
T-F units having lower target loudness (L1, L2, L3), while
performance drops significantly when the same amount of er-
rors were introduced to target-present T-F units having high-
est target loudness (L4). A similar tendency is observed when
mask errors were introduced to target-absent T-F units. A
gradual drop in performance is observed as the location of
mask errors shifts from T1 to T3. Dramatic degradation in
performance occurred when mask errors were introduced to
T-F units belonging to T4. This demonstrates the fact that
the importance of each T-F units varies in accordance with
loudness of its signal content.

It is clear from the Fig. 2 that existing mask-based objec-
tive measures, HIT-FA and IBMR, could not provide consis-
tent prediction on the stimuli created from binary masks hav-
ing asymmetric mask errors. This is due to the fact that HIT-
FA and IBMR assume that each T-F unit has an equal contri-
bution to speech intelligibility. On the other hand, prediction
from the proposed mask-based objective measure (LWHF) is
in general consistent with subjective listening scores.

4. CONCLUSION

While existing mask-based objective measures, such as HIT-
FA and IBMR have shown modestly good correlation with
subjective intelligibility scores in some conditions, the con-
sistency is not always the case when mask errors were dis-
tributed asymmetrically in T-F units of different loudness lev-
els. This is due to the fact that HIT-FA and IBMR were based
on the simple assumption that each T-F unit has the same con-
tribution to speech intelligibility. This study has proposed
a new mask-base objective measure in which each T-F unit
is weighted according to the loudness of its speech content.
The proposed metric shows significantly better performance
than two other well established previous mask-based objec-
tive measures.
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Fig. 2. Comparison of proposed method (LWHF) with two existing mask-based objective speech intelligibility measures,
namely Hit-False (HIT-FA) and ideal binary mask ratio (IBMR), on speech stimuli produced from binary masks having asym-
metric mask errors. Subjective performance is used as reference for comparison.
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