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ABSTRACT

In recent years, sparse representation is adopted to improve the qual-
ity of noise corrupted speech. However, the representation of noise
is also found to be sparse in some special cases, which degrades
the performance of sparsity based speech enhancement. An adap-
tive speech enhancement algorithm using sparse prior information
is proposed in this paper. In the proposed method, speech enhance-
ment is casted to an optimization problem, where linear prediction
(LP) residual and DCT coefficients are combined and adopted as the
representation of speech to ensure that noise is dense in the such do-
main. Other features, including speech energy, noise energy, and in-
terframe correlation are also considered as constraints to improve the
quality and intelligibility of recovered speech. Experiment results
show that the proposed algorithm exceeds the reference algorithms
in various noise scenarios, especially, in the cases of narrowband
noise and low SNR.

Index Terms— Adaptive speech enhancement, sparse represen-
tation, linear prediction, energy constraint, interframe correlation

1. INTRODUCTION

In practical systems, such as voice communication and speech recog-
nition, noise is almost inevitable. Noise degrades the performance of
these systems dramatically. For example, speech recognition accu-
racy likely suffers greatly in the presence of noise. Therefore, it
is essential to reduce noise effectively with signal processing tech-
niques. Over the past four decades, a number of speech enhancement
algorithms have been developed. Though some of them have been
utilized in commercial schemes, there is still a gap between the hu-
man desire and ready-made technologies.

This paper focuses on the enhancement for speech corrupted by
additive noise in single channel systems. The conventional speech
enhancement algorithms can be roughly divided into three categories
[18]: spectral-subtractive algorithms [1–3], statistical-model-based
algorithms [4–6], and subspace algorithms [7–9]. Most of them fo-
cus on the spectrum estimation of noise or speech.

Recently, sparse representation is extensively investigated. Spar-
sity is an important feature of speech, which has been found ap-
proximately sparse in some transform domains, for example, DCT
domain and wavelet domain [10], and over redundant dictionaries
of clean speech exemplars [11, 12]. Linear prediction (LP) residual
of speech has also been found sparse [15–17]. Sparse prior infor-
mation has been introduced into speech coding and speech enhance-
ment [10–14], which achieve good performance. In [10], the sparsity

The corresponding author of this paper is Yuantao Gu
(gyt@tsinghua.edu.cn).

of DCT coefficients is adopted for speech enhancement. The en-
hancement algorithm proposed in [11] consideres the sparsity over
the redundant dictionary of clean speech exemplars. In [14], the
prior information that the DCT-II coefficients of speech are sparse
over the redundant dictionary is used to improve the speech quality.

One implicit assumption in these enhancement algorithms [10,
11, 14] is that the representation of speech in a transform domain or
over a redundant dictionary is sparse, while that of noise is dense.
Based on this assumption, clean speech can be recovered by finding
the sparse representations. However, some kinds of noise are also
found sparse in the above representation scenarios, which results in
degradation of enhancement performance. For example, since coef-
ficients of car interior noise are sparse in DCT domain, the speech
enhancement performance for car interior noise is not as good as
that in other noisy background [10]. In addition, some features,
for example, speech energy and the interframe correlation, are not
considered sufficiently in the available speech enhancement algo-
rithms [10–14], which probably hinders the further improvement of
speech quality.

In this paper, an adaptive speech enhancement algorithm using
sparse prior information (ASESI) is proposed. In this algorithm,
LP residual is adopted as the representation of speech in order to
keep the parameters of speech sparse while that of noise dense. The
energy constraint and interframe correlation are also adopted into
the proposed algorithm to improve the quality and the intelligibility
of recovered speech. The clean speech is recovered by finding the
component whose LP residual and DCT coefficients are both sparse
under the energy and the interframe correlation constraints, i.e., by
solving an optimization problem. This formalized problem can be
solved with numerous existing methods. LP coefficients, speech en-
ergy, and interframe correlation, which are used to recover speech,
are the distinctive features for each frame, which reveals the adap-
tive behavior of the proposed algorithm. Experimental results con-
firm that a wide range of noise can be reduced effectively through
the proposed approach.

2. SPARSITY OF LP RESIDUAL

This work considers the following LP model,

x(n) =
K∑

k=1

akx(n− k) + r(n) (1)

where x(n), r(n), ak, and K denote the speech signal, the LP resid-
ual, the LP filter coefficients and order, respectively. The LP coeffi-
cients are estimated by minimizing the least squares of LP residual.

In this paper, it is assumed that the initial state of filter, i.e.,
x(n) = 0,∀n ≤ 0. Hence, according to (1), LP residual vector r =
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Fig. 1. Example of the residual of voiced speech, unvoiced speech
and white noise. The LP filter order is 10 and the frame length is
320.

[r(1), r(2), · · · , r(N)]T can be expressed using the speech vector
x = [x(1), x(2), · · · , x(N)]T and the LP coefficient matrix as

r = Ax, (2)

where A is the N ×N matrix derived as

A =



1 0 0 0 0 · · · 0 0
−a1 1 0 0 0 0 · · · 0

...
...

−aK · · · −a1 1 0 0 · · · 0
0 −aK · · · −a1 1 0 · · · 0
...

...
0 · · · 0 0 −aK · · · −a1 1


.

For sparsity based speech enhancement algorithms, the enhance-
ment performance closely depends on the sparsity distinction be-
tween the representation of speech and that of noise. Considering the
LP residual of voiced frame is approximately sparse, as can be seen
from Fig.1(a), it is highly possible that the spectrum of noise is sig-
nificantly different from the spectrum of voiced speech. Hence, the
representation of noise is very likely to be dense. This can be seen
from Fig.1(c). Above all, the significant sparsity distinction can be
guaranteed by adopting the LP residual as the representation, which
probably leads to an improvement of enhancement performance. In
Section 4.1, an experiment will be conducted to evaluate the sparsity
of the representation of voiced speech and noise.

From Fig.1(b), it can be seen that the representation of unvoiced
speech is also dense, which corresponds to its noise-like feature.
Therefore, such frame is probably not recovered accurately. Since
the quality and intelligibility of speech is mainly decided by the
voiced speech, the focus of recovering voiced speech will not heavily
reduce the performance of the proposed algorithm.

3. THE PROPOSED ALGORITHM

In this section, the main contribution of this work, an adaptive speech
enhancement algorithm using sparse prior information, is introduced
in detail. The proposed algorithm adopts LP residual as one of the
sparse representation of speech, considering it is feasible and advan-
tageous, as analyzed in the previous section. To make full use of the
sparsity of speech, DCT coefficients are also included to contribute
as a measurement. The proposed algorithm aims to recover the clean
speech, whose LP residual and DCT coefficients are both sparse, via
solving an optimization problem under a series of constraints. The
optimization problem is formulated in the first subsection, then its
solution is introduced in the second one.

3.1. Formulation of the optimization problem

Let y = [y(1), · · · , y(N)]T be the noisy speech,

y = x+ e, (3)

where e denotes the additive noise.
The proposed optimization problem is to solve a balanced mini-

mization,
x̂ = min

z∈RN
λ∥Ãz∥1 + (1− λ)∥Dz∥1, (4)

subject to three constraints as follows

α1Ẽx ≤ ∥z∥22 ≤ α2Ẽx, (5)

∥y − z∥22 ≤ Ẽe, (6)

∥x̂′
2 − z1∥22 ≤ ϵẼx, (7)

where x̂ and z denote the recovered speech and its candidate, D
denotes DCT matrix, λ, α1, α2, and ϵ are parameters, respectively.
Other parameters and the meanings of (4), (5), (6), and (7) will be
explained later.

The objective function (4) ensures that both LP residual and
DCT coefficients of the recovered speech are sparse, where λ is a
factor used to balance these two types of sparsity. In the ideal situ-
ation, the LP coefficients of clean speech should be applied for the
best performance. However, A is obviously not available in prac-
tice. Hence, its estimate, Ã, is adopted in (4), while the estimation
method will be introduced in detial in Section 3.2.

In order to improve the accuracy, the energy of the recovered
speech is constrained to be close to that of the clean speech, i.e., the
first constraint of (5), where α1 and α2 describe the degree of ap-
proximation. To the same reason that the clean speech is not avail-
able, the clean speech energy is replaced by its estimate, Ẽx. The
second constraint of (6) is rather similar to the first one. It puts a
condition on the estimated noise, which is demanded not to be too
large, using an estimated noise energy, Ẽe.

Please notice that the consecutive speech frames are overlapped
in the proposed model. Consequently, one may ready to demand
that the overlapping fragments of the recovered speech frames are as
close as possible, as described in (7), where x̂′

2 and z1 denote the last
P samples of the previous recovered speech x̂′ and the first P sam-
ples of z, respectively. Parameter ϵ is used to control the correlation
level. Actually, this constraint probably results in an improvement
of the intelligibility of recovered speech.

Based on the discussion above, clean speech will be recovered,
if its LP residual and DCT coefficients are both sparse under the
constraints of moderate energy and correlation with previous frame,
which conveys to the main idea of the proposed algorithm.
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3.2. Solution of the optimization problem

Based on the above analysis, the enhancement is conducted in two
steps: first estimating and setting the parameters, and then solving
the optimization problem.

Step 1: Estimating and setting parameters

The energy of clean speech and noise, as well as the LP coeffi-
cients of clean speech, need to be estimated to activate the solution.
Iterative Wiener filtering algorithm [4] is selected to do preprocess
and the idea of energy prediction is applied in the estimation.

First, the noisy speech frame is processed using iterative Wiener
filtering algorithm. The energy and the LP coefficients of the pro-
cessed speech are calculated and denoted by Ew and aw, respec-
tively. Then the estimated upper bound and lower bound of the clean
speech energy of the current frame, which are denoted by Eu and El,
are predicted based on the previous recovered frame. The energy of
x̂′
2 is adopted as the lower bound. The upper bound, which is con-

trolled by the noisy speech energy of the current frame, is obtained
by

Eu = El + Ey3 , (8)

where Ey3 denotes the energy of the last N−P samples of the noisy
speech frame.

If Ew is in the interval of El and Eu, the estimates from the
preprocessed frame are considered as acceptable to the recovery of
clean speech, or else, the predicted values computed from the previ-
ous recovered frame are preferred. Therefore, the estimates of clean
speech energy and LP coefficients used for optimization are obtained
by

{Ẽx, ã} =

 {Ew,aw} El ≤ Ew ≤ Eu;
{El, â

′} Ew < El;
{Eu, â

′} Ew > Eu,
(9)

where â′ denotes the LP coefficients of the previous recovered
frame.

Consequently, the estimate of noise energy is obtained as

Ẽe = Ey − Ẽx (10)

where Ey is the energy of noisy speech frame.
Parameters λ, α1, α2, and ϵ used in the optimization problem

need to be set. According to (4), a smaller λ leads to the sparser
DCT coefficients, while a larger λ leads to the sparser LP residual.
To be noticed, matrix D used in calculated DCT coefficients is a
predefined, while matrix Ã used in producing LP residual is an esti-
mate. Therefore, based on our observation, λ is set small in low SNR
scenario to reduce the misleading of the estimated LP coefficients.
Additionally, for the noise whose DCT coefficients are also sparse,
λ is set large. According to (7), a smaller ϵ leads to the stronger
interframe correlation. Therefore, ϵ is set large to reduce the error
propagation from the previous frame to the current frame when the
SNR is low. Finally, α1 and α2 are set close to 1 so that the energy
error between recovered speech and clean speech is kept small.

Step 2: Solving the optimization problem

The optimization problem is a constrained nonlinear program-
ming problem, which has been extensively and intensively studied.
Hence, after obtaining the parameters in (4), (5), (6), and (7), it can
be solved using available methods.

4. EXPERIMENTS

In this section, experiments are conducted to verify the idea and the
performance of the proposed algorithm. Clean speech is extracted
from TIMIT database and downsampled at 8kHz. Various types of
noise, including stationary white Gaussian noise (WGN), car inte-
rior noise (CIN), and F16 cockpit noise (FCN), are obtained from
Noisex-92 database. Noisy speech is produced by adding the above
mentioned noise to the clean speech at −5 dB, 0 dB, 5 dB and 10
dB, respectively. In these experiments, the frame is 32 ms (256 sam-
ples) long and overlapped for 24 ms (192 samples). Tenth-order LP
analysis is adopted.

Before testing the proposed algorithm, we firstly explore the
sparsity of speech and various types of noise in LP residual domain
and DCT domain by signal compressibility.

4.1. Signal compressibility experiment

Signal compressibility is measured with the averaged mean squared
reconstruction errors (MSRE) of signal energy compaction [10].
MSRE for a given signal x is defined as

ε(x, τ) = ∥x−Φ−1⌈X⌉τ∥22 (11)

where
X = Φx,

Φ is a transform matrix, and ⌈X⌉τ is the signal obtained by keeping
its τ × 100% largest values and setting the rest to zeros. According
to (11), for a fixed τ , the smaller the MSRE is, the sparser the repre-
sentation of x is. For a given signal set S = {xn, n = 1, · · · , T},
the averaged MSRE is defined as

ε̄(S, τ) = 1

T

T∑
n=1

ε(xn, τ) (12)

In this experiment, the averaged MSREs of voiced speech,
WGN, CIN, and FCN are compared. First, let Φ be the transform
matrix A in (2) constructed from the LP coefficients of the voiced
speech. The result is shown in Fig.2. Then, let Φ be the DCT matrix.
The result is shown in Fig.3.

The result in Fig.2 shows that the LP residual of speech is sig-
nificantly sparser than that of noise, which confirms the advantage
of adopting LP residual of speech as the representation. From Fig.3,
it can be clearly seen that the DCT coefficients of CIN are sparser
than that of the speech, which indicates that the speech corrupted
by CIN may not be accurately recovered by the only sparsity con-
straint in DCT domain. This result verifies the proposed approach
of combining the sparsity measurement in both LP residual domain
and DCT domain. Furthermore, one may predict that the proposed
algorithm works excellent in the narrow band noise scenario, i.e.,
CIN scenario.

4.2. Performance of the proposed algorithm

In this experiment, the performance of the proposed algorithm (AS-
ESI) is evaluated and compared with some reference algorithms, in-
cluding that using DCT coefficients as the representation (DCTNR)
[10] and iterative Wiener filtering algorithm (IWF) [4]. The pro-
posed algorithm using accurate parameters (ASESI-OPT) other than
estimated values is also compared to provide an insight. The Percep-
tual Evaluation of Speech Quality (PESQ) [18] is adopted to evalu-
ate the recovered speech. Please notice that though IWF algorithm
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Fig. 2. Comparison of averaged MSRE between speech and various
types of noise when Φ = A.

Table 1. Values of λ in The Optimization Problem
WGN CIN FCN

EST OPT EST OPT EST OPT
−5dB 0.20 0.40 0.50 0.50 0.20 0.43
0dB 0.22 0.43 0.52 0.53 0.23 0.43
5dB 0.25 0.44 0.54 0.56 0.25 0.44

10dB 0.30 0.45 0.58 0.60 0.28 0.45

serves as a preprocessing step for the proposed algorithm, it still
needs to be compared to demonstrate the improvement of our con-
tribution.

According to the analysis in Section 3.2, the values of the pa-
rameters are set as follows. α1 and α2 are set to 0.98 and 1.2, re-
spectively. Corresponding the SNR of −5 dB, 0 dB, 5 dB, 10 dB, ϵ
is 0.3, 0.24, 0.2, 0.12 for ASESI, and set to 0.1, 0.08, 0.06, 0.06 for
ASESI-OPT. The values of λ in ASESI and ASESI-OPT are shown
in Table 1, where the column of EST corresponds to ASESI and OPT
corresponds to ASESI-OPT. Function fmincon in MATLAB is used
to solve the optimization problem. PESQ of each algorithm is shown
in Table 2.

From Table 2, it can be seen that ASESI outperforms DCTNR in
all noisy conditions and performs better than IWF at low SNR, which
indicates that the proposed algorithm is effective to reduce various
types of noise, especially in the heavy noise scenario. Moreover,
ASESI significantly outperforms DCTNR for CIN, which shows the
advantage of the proposed algorithm for the noise whose representa-
tion in particular transform domains is sparse. The result also shows
that the performance of ASESI-OPT is significantly better than that
of DCTNR, IWF, and ASESI, which indicates that it is promising to
further improve the performance of ASESI by increasing the estima-
tion accuracy of the parameters.
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Fig. 3. Comparison of averaged MSRE between speech and various
types of noise when Φ = D.

Table 2. PESQ of Respective Enhancement Algorithms
DCTNR IWF ASESI ASESI-OPT

WGN

−5dB 1.6890 1.4520 1.7816 2.3932
0dB 1.9656 1.9168 2.0002 2.6981
5dB 2.2328 2.3041 2.3867 2.9990

10dB 2.4842 2.7080 2.5535 3.2576

CIN
−5dB 0.7496 0.7132 1.4020 2.0751
0dB 1.0800 1.3866 1.6403 2.4123
5dB 1.8228 2.3940 2.2041 2.6304

10dB 2.2442 2.8807 2.5826 3.0294

FCN
−5dB 1.3375 1.2443 1.5058 2.0809
0dB 1.7103 1.7564 1.8061 2.3492
5dB 2.0634 2.1891 2.1759 2.6819

10dB 2.4824 2.7047 2.4953 2.9773

5. CONCLUSION

In this paper, an adaptive speech enhancement algorithm using
sparse prior information is proposed. To keep the representation of
noise dense, as well as to improve the quality and intelligibility of
the recovered speech, both the LP residual and DCT coefficients are
adopted and balanced as the sparsity measurement. Furthermore,
the energy and interframe correlation are considered as additional
constraints. Experiment results confirm that the representation of
speech and noise are sparse and dense, respectively and clearly. Ex-
periment results also confirm that noise can be reduced effectively
using the proposed algorithm. Additionally, experiment results
indicate that the performance of the proposed algorithm will be
improved by enhancing the estimation accuracy of the parameters in
the optimization model.
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