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ABSTRACT
Radio-transmitted speech sometimes contains a residual fre-
quency shift or offset, resulting from incorrect demodulation
in single-sideband channels. Frequency-shifted speech can
mask speaker identity and reduce intelligibility. Therefore,
frequency offset will degrade the performance of downstream
speech technologies. Existing offset correction methods re-
quire a pitch estimate of the speech signal, which is difficult
in noisy radio channels. We present a new, automatic algo-
rithm for detecting and correcting frequency offset, based on
third-order modulation spectral analysis. Our method is re-
markably simple and does not require pitch estimation. We
provide derivations, examples, and a pilot study demonstrat-
ing how offset correction improves speaker verification for
radio-transmitted speech.

Index Terms— Modulation spectrum, speech enhance-
ment, speaker recognition, single-sideband, frequency offset

1. INTRODUCTION

A prevalent form of radio communication is single-sideband
(SSB) radio, which is one channel-type in the DARPA RATS
challenge [1]. A particular problem in SSB is frequency-shift
distortion, described as follows. SSB works by first shifting
the speech spectrum to a high-frequency slot in the radio spec-
trum. In a process called demodulation, the receiver down-
shifts the signal to audible frequencies [2]. When the receiver
fails to synchronize with the transmitter, the received speech
contains a residual frequency offset. Defining the speech sig-
nal as y(t) with Fourier transform Y (f), the received dis-
torted signal is

R(f) = Y (f −∆f), 0 ≤ f <∞. (1)

Frequency offset distortion is a problem for automatic
speech and speaker recognition. It is clear that (1) will affect
spectral feature representations such as MFCC and PLP. Per-
ceptually, frequency offset is audible for ∆f > 5 Hz, beyond
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which it becomes increasingly cartoonish or “chipmunk-
like.” Experimentally, Başkent and Shannon [3] found that
frequency shift significantly degrades vowel recognition by
humans. Therefore, automatic frequency offset correction is
essential for large-scale processing of radio speech.

In digital communications, it is common to infer ∆f from
repeated symbols [4, 5], or from a training symbol sequence
[6]. This is inapplicable for post-hoc processing, but the gen-
eral idea is useful. Equation (1) is invertible provided we have
an idea of what Y (f) should look like. For instance, Voelcker
[7] solved the offset problem with the assumption of a promi-
nent, yet artificial, reference feature in Y (f). Since speech is
our signal of interest, the estimate for ∆f should maximize
the speech-like quality of Y (f) = R(f + ∆f). For instance,
pitch-based methods estimate ∆f as the offset that restores
harmonicity of voiced speech [8, 9].

Pitch estimation, however, is difficult in adverse channel
conditions and noise. Furthermore, pitch unnecessarily ab-
stracts away the communication-theoretic components of the
speech signal. We instead demonstrate that frequency shift
correction is more simply posed in the modulation-frequency
domain. With no need for pitch estimation or training, our
proposed method is a lightweight module that can recover
previously unusable audio for human or machine consump-
tion.

We first introduce and motivate the modulation perspec-
tive in Section 2. Then, we derive the automatic estimator
in Section 3. Using an implementation of the estimator, we
preprocess RATS data for speaker verification in Section 4.
Finally, we conclude in Section 5.

2. A MODULATION SPECTRAL PERSPECTIVE

Although we defined frequency offset in the Fourier domain,
the estimation problem is not well-posed in terms of the spec-
trum R(f). This is due to the high variability of the speech
spectrum, depending on what is being said, who is saying it,
the channel transfer function, and what noise is present. It
is therefore difficult to identify a truly invariant spectral ref-
erence for recovering Y (f) from R(f). Harmonicity is one
possibility, but this requires pitch detection and a guarantee
that Y (f) contains the fundamental. Both requirements are
dubious for highly compressed and noisy radio transmissions.
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Our proposed alternative uses the modulation-frequency
spectrum, rather than the acoustic-frequency spectrum, as a
reference signal. In contrast to the acoustic spectra R(f) and
Y (f), the modulation spectrum is a model-based estimator
tuned to the temporal data rate of speech. As a result, the
modulation spectrum, also known as the modulation transfer
function, is peaked around the syllabic rate of 4 Hz. This
observation, demonstrated as early as 1928 [10] and system-
atized by Houtgast and Steeneken [11], indicates that the tem-
poral bandwidth of speech is actually quite low. Experimen-
tal studies have since proven that modulation frequencies up
to 16 Hz are necessary for preserving speech intelligibility
[12, 13], an indispensable fact in modern speech processing
representations (e.g., [14, 15]).

We will use n to denote sample index and fs the sampling
rate in Hertz. The discrete-time complex analytic signal is
defined for a general signal x[n] as

xa[n] =

∫ fs/2

0

X(f)ej2π(f/fs)ndf (2)

from which we find

ra[n] = ya[n]ej2π∆fn. (3)

Let us introduce the new, third-order complex “envelope” as

dx[n] = xa[n] |xa[n]|2 . (4)

One element of dx[n] is the second-order envelope |xa[n]|2.
From (3) we see that that |ra[n]|2 = |ya[n]|2, and is therefore
offset-invariant. This acts as an implicit harmonic reference
in dr[n], since dr[n] = ra[n]|ya[n]|2.

Taking the Fourier transform yields the new, third-order
modulation spectrum

Dx(f) =
∑
n

dx[n]e−j2π(f/fs)n. (5)

Substituting (3) into (5), we obtain

Dr(f) = Dy(f −∆f). (6)

It would appear that (6) is identical to (1), except for some
important properties. As we shall prove in the next section,
Dy(f) is peaked at f = 0, does not change with pitch, and has
narrow bandwidth commensurate with the modulation band-
width of speech. These properties provide a necessary and
stable reference feature for detecting ∆f in Dr(f).

Figure 1 demonstrates the advantage of the third-order
modulation spectrum over the conventional power spectrum.
It shows an example of original speech Dy(f) with its syn-
thetically frequency-offset version Dr(f), to simulate SSB
radio reception. The frequency shift is directly visible in
Dr(f) as the location of the baseband peak. Such a clear
and invariant feature does not exist in the general acoustic
spectrum of speech.1

1A special exception is when the SSB carrier is not suppressed, in which
case the acoustic spectrum may contain a peak at ∆f Hz.
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Fig. 1. Overlay ofDr(f) for a synthetically frequency-shifted
speech example (red, solid), with ∆f = 50 Hz, compared to
the original speech spectrum Dy(f) (blue, dashed).

3. THIRD-ORDER MODULATION
SPECTRAL ESTIMATOR

Next, we will derive the third-order modulation spectrum
from basic speech properties, and present a means for auto-
matic frequency offset detection.

Rather than the Fourier transform in (5), a spectrogram is
more useful for Welch-style spectral estimation. The short-
time, third-order modulation power spectrum is defined as

Dx[n, f) =
∑
p

g[p]dx[n+ p]e−j2π(f/fs)p (7)

where g[n] is a short analysis window that dictates the fre-
quency resolution of the modulation spectrogram. As in (6),
we still have Dr[n, f) = Dy[n, f −∆f).

We are now in a position to state the main result of this
paper. Although Dr[n, f) contains many peaks, the offset
∆f is the center of pitch-related symmetry in the modulation-
frequency axis. Figures 2 and 3 illustrate this property, for
speech before and after transmission through an actual SSB
radio channel. Our statement is descriptive and requires justi-
fication, as well as practical considerations. In the following
subsections, we discuss each stage of the estimator in detail.

3.1. Sum-of-Products Signal Model for Speech

The properties of the third-order modulation spectrum are
best understood in terms of a modulation synthesis model
for speech. Later, we will make predictions about the time-
frequency structure of dy[n] after observing the effects of
third-order basebanding on the modulation components of
speech.

We assume the sum-of-products model [16], similar to the
sinusoidal model [17], given by

ya[n] =

K∑
k=k1

mk[n] exp(jkφ0[n]). (8)
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Fig. 2. The modulation spectrogram |Dy[n, f)| for speech,
before transmission through an SSB radio channel. The
dashed line indicates the center of vertical symmetry about
zero Hz.

where mk[n] is the kth lowpass modulator, and φ0[n] is the
phase of the fundamental subband. We indicate that k starts
at k1 ≥ 1 as a result of possible bandpass filtering in the radio
channel.

Based on the empirical modulation studies discussed
in Section 2, we assume the modulators are bandlimited
on the order of tens of Hertz. Conversely, the harmonics
exp(jkφ0[n]) are bandpass in frequency, on the order of
hundreds of Hertz.

3.2. Third-Order Basebanding

The third-order nonlinearity in (4) should be viewed as an
operation that brings speech modulations mk[n] to baseband,
or centered on zero Hz. It is sufficient to prove this for dy[n],
since dr[n] is identical except shifted by ∆f .

In terms of the sum-of-products model (8), dy[n] =
LB [n] + LH [n], where LB [n] is the baseband term

LB [n] =
∑

k,p≥k1

mk[n]mp[n]m∗k+p[n] (9)

and LH [n] consists of harmonic sideband terms

LH [n] =
∑
k 6=q−p

mk[n]mp[n]m∗q [n]ejφ0[n](k+p−q). (10)

In Figure 2, LB [n] is the baseband term centered at zero
Hertz. Important facts about the third-order envelope include:

• Due to the slowly-varying nature of speech modula-
tions, LB [n] is lowpass and disjoint from the harmonic
terms in LH [n].

• LB [n] is not frequency-modulated, as evidenced by the
lack of complex exponentials in (9).
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Fig. 3. The modulation spectrogram —Dr[n, f)| after trans-
mission through an actual SSB radio channel. The center of
vertical symmetry at 117 Hz, has shifted relative to Figure 2.

• Due to multiple combinations of cross-terms in LH [n],
it is likely that there exist symmetrically frequency-
modulated terms in LH [n].

Together, these three points imply that ∆f can be detected as
the center of symmetric-like structure in the Fourier transform
of dy[n], or Dy(f). This property is the basis for the ∆f
estimator described next.

3.3. Estimator Based on Modulation Symmetry

We are careful to state that LH [n] has symmetric frequency-
modulations, because Dy[n, f) is not truly symmetric in f .
That is, the harmonics appear to move symmetrically around
zero Hertz in Figure 2, but amplitudes are not symmetric.

To emphasize the harmonic symmetry in Dr[n, f), we
propose to use homomorphic filtering [18]. The modified
modulation spectrum is

D′r[n, f) = W (f) ~ log |Dy[n, f)| (11)

where ~ denotes circular convolution, and W (f) is a high-
pass edge-detector defined as

W (f) = δ(f)−
T∑

q=−T
ej2π(f/fs)q. (12)

SinceW (f) is intended to emphasize harmonics, the highpass
cutoff T = 1/fmax corresponds to the maximum pitch spac-
ing preserved by the filter. The logarithm serves to compress
the vast dynamic range of Dr[n, f), as well as separate the
spectral envelope from harmonic ridges in the f dimension.

To find the center of symmetry, we match the modulation
spectrum against itself in an auto-convolution, defined by

Ar(f) =
∑
n

∫ fs/2

−fs/2
D′r[n, 2f − u)D′r[n, u)du. (13)
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Fig. 4. Plot of Ar(f) for the signal shown in Figure 3. The
dashed line indicates the known offset of ∆f = 117 Hz.

We find the offset frequency ∆f as

∆f = argmax
f

Ar(f). (14)

Due to the circularity of the discrete-time Fourier trans-
form, the auto-convolution estimator is restricted to the range
|∆f | < fs/4. Figure 4 shows Ar(f) for the received signal
in Figure 3, indicating a strong peak at the known offset of
117 Hz.

Finally, the corrected speech signal is

y[n] = Re{ra[n] exp(−j2π(∆f/fs)n)}. (15)

4. APPLICATION TO SPEAKER VERIFICATION

The DARPA RATS program [1] deals with conversational
telephone speech in various languages transmitted over sev-
eral radio channels. One channel is known to cause SSB
offset, which varies randomly from conversation to con-
versation. In this section, we describe two speaker verifi-
cation experiments using frequency-offset correction as a
preprocessor module. We conducted both experiments on
the LDC2012E40 subset provided by the Linguistic Data
Consortium.

In the first experiment, we processed only the files from
the SSB channel, labeled as “channel D,” to simulate the sce-
nario where data has been flagged for SSB-offset correction.
We call this scenario DEMOD1. Our ∆f estimates for chan-
nel D were approximately Gaussian distributed with mean
41 Hz and standard deviation 25 Hz. Outliers also appeared
around 1000 Hz, which we determined were erroneous. In
response to outliers, we made a second demodulated corpus
called DEMOD2, in which we processed only channel D but
this time set outlier estimates to zero Hz, for no demodulation.

Outlier ∆f estimates occurred from spurious peaks in
the modulation spectrum, usually resulting from tonal noise.

However rare, large errors can destroy the identity and intel-
ligibility of a signal. We found that speech activity gating
can prevent some outliers. For this reason, we used a ro-
bust speech activity detector [19] for both DEMOD1 and
DEMOD2, trained specifically for the RATS channels.

After preprocessing, we fed the corrected audio from both
DEMOD1 and DEMOD2 into i-vector speaker verification
experiments. The features used time-frequency autoregres-
sive modeling [20], referred to as PLP2 features. A 512 mix-
ture, gender-independent GMM-UBM was trained using 42
hours of the data. UBM means were concatenated into super-
vectors, which were used to train an i-vector factor analysis
[21] using 630 hours of data. The resulting i-vectors were
then used to train a PLDA system [22], providing a 150 di-
mensional subspace for final scoring.

The table below shows equal error rates (EER) for the
baseline and both demodulation conditions. Although we
modified files from only Channel D, this changed the training
data used for all channels. For this reason, non-D channels
see small differences between the baseline, DEMOD1, and
DEMOD2. The reader will see that channel D is the second
highest EER in the baseline evaluation, and drops by almost
1.5 and 2 points in the two demodulation conditions. Con-
sidering non-D channels, there is on average no difference
between DEMOD2 and the baseline.

Equal Error Rate (%)
Channel Baseline DEMOD1 DEMOD2

A 6.47 6.65 6.47
B 7.63 7.74 7.51
C 5.02 5.19 5.13
D 11.19 9.68 9.23
E 9.02 9.01 8.98
F 6.30 6.34 6.41
G 4.48 4.67 4.54
H 18.01 18.00 17.6

Mean 8.06 7.97 7.82

5. CONCLUSION

Frequency offset is a type of distortion in SSB radio-transmitted
speech. Since most speech processing features are based on
the Fourier spectrum, this distortion lies outside the usual
realm of robust features. Our solution is an automatic esti-
mator of frequency offset using the third-order modulation
spectrum. From a sum-of-products model of speech, we
showed that frequency offset is the center of pitch-related
symmetry in the modulation spectrogram.

In a speaker verification task, our proposed method of fre-
quency offset correction yielded up to 2% absolute reduction
in EER. Opportunities for further work include time-varying
frequency offset, and a means of removing or mitigating tonal
interference in the audio.
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