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ABSTRACT

Speech separation based on time-frequency masking has been
shown to improve intelligibility of speech signals corrupted
by noise. A perceived weakness of binary masking is the
quality of separated speech. In this paper, an approach for
improving the perceptual quality of separated speech from
binary masking is proposed. Our approach consists of two
stages, where a binary mask is generated in the first stage that
effectively performs speech separation. In the second stage,
a sparse-representation approach is used to represent the sep-
arated signal by a linear combination of Short-time Fourier
Transform (STFT) magnitudes that are generated from a clean
speech dictionary. Overlap-and-add synthesis is then used to
generate an estimate of the speech signal. The performance of
the proposed approach is evaluated with the Perceptual Evalu-
ation of Speech Quality (PESQ), which is a standard objective
speech quality measure. The proposed algorithm offers con-
siderable improvements in speech quality over binary-masked
noisy speech and other reconstruction approaches.

Index Terms— Sparse Representations, Speech Quality,
Binary Masking, Ideal Binary Mask (IBM), Speech Separa-
tion

1. INTRODUCTION

Computational Auditory Scene Analysis (CASA) systems
have been used extensively to separate speech signals that are
corrupted by noise in a monaural recording. A main compu-
tational goal of CASA is to estimate the ideal binary mask
(IBM) that identifies whether a time-frequency (T-F) unit is
dominated by speech or noise [1]. A T-F unit is assigned
a value of 1 if it is speech dominant, and 0 otherwise. An
estimate of the speech signal is then obtained by applying the
binary mask to the T-F representation of the mixture.

When applying a binary mask to the T-F representation
of a mixture, portions of the target speech are removed when
they are considered to be dominated by noise. Likewise, por-
tions of the noise are retained when they are considered to be
dominated by speech. This creates a problem in speech qual-
ity, which is typically evaluated by comparing the estimated

speech signal against the clean speech signal [2, 3, 4]. Also,
errors in binary mask estimation degrade perceptual speech
quality due to musical noise and cross-talk problems [5].

Methods have been proposed to address the quality issue
in speech separation. In particular, [5] attempts to reduce the
effects of musical noise by smoothing the binary mask in the
cepstral domain. In [2], musical noise is reduced by using
a fine shift rate when generating T-F representations. These
approaches reduce the effects of musical noise, however, the
effects due to incorrectly defining a speech dominant T-F unit
as noise dominant is not addressed. In [6], a hybrid approach
that combines a model-based approach with a source-driven
approach is used to separate speech in 0 dB monaural record-
ings. A multi-pitch tracker extracts pitch information from
the speakers, while the model-based approach uses a vector
quantizer to represent the spectrum envelope of the speak-
ers. Although the hybrid approach results in improved signal-
to-noise ratios (SNRs) over the individual approaches, using
pitch may not be completely effective for improving speech
quality since estimating pitch at low SNRs is very challeng-
ing [4].

In this paper, we propose to use a sparse representation
technique to reconstruct the STFT magnitudes of speech
separated by binary masking. With sparse representations,
each time frame of the STFT magnitude of separated speech
is replaced by a sparse linear combination of STFT magni-
tudes from clean speech. Sparse representations have been
effective in similar tasks such as automatic speech recog-
nition (ASR) [7] and image denoising [8, 9], however, its
ability to improve the perceptual quality of speech separated
by binary masking has not been investigated. The proposed
approach utilizes sparse representations to improve the per-
ceptual quality of separated speech, and our system will be
compared against traditional STFT magnitude reconstruc-
tion approaches. PESQ will be used as the objective speech
quality measure to evaluate our systems performance.

The rest of the paper is organized as follows. The pro-
posed algorithm is presented in Section 2. An evaluation of
our approach is given in Section 3, along with a comparison
to other reconstruction approaches. Section 4 concludes the
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discussion of the proposed system.

2. DESCRIPTION

Our proposed system is a two-stage approach, where initially
a binary mask is estimated that identifies the T-F units that are
speech dominant and the T-F units that are noise dominant.
The binary mask is applied to the STFT of the mixture to pro-
duce estimated STFTs for the speech and the noise, respec-
tively. A ratio mask is generated from the STFT magnitudes
of the separated speech and noise. The ratio mask is then
applied to the STFT of the original noisy mixture, resulting
in a new estimated STFT. Using sparse representations, the
STFT magnitude of the speech signal separated by the ratio
mask is represented as a sparse linear combination of STFT
magnitudes from clean speech signals. Finally, the sparsely-
reconstructed STFT magnitude is combined with the STFT
phase of the mixture, and overlap-and-add synthesis is used
to produce an estimated speech signal. The following sec-
tions describe these steps in more detail.

2.1. IBM Estimation

The IBM is computed from the STFT magnitudes of the
speech component, S(t, f), and the noise component,N(t, f),
of a mixture, where t and f index the time and frequency di-
mensions, respectively. With these two representations, the
IBM is a binary matrix defined as follows [1]:

IBM(t, f) =

{
1, if S(t, f) > N(t, f)
0, otherwise (1)

The complement of the binary mask assigns a value of 1 if it
is noise dominant and 0 otherwise. An estimate of the noise
is obtained when the complementary binary mask is applied
to the T-F representation of the mixture.

In our proposed approach, a binary mask is generated by
binary classification (e.g., [10]). A set of complementary
features such as amplitude modulation spectrogram (AMS),
relative spectral transform and perceptual linear prediction
(RASTA-PLP), mel-frequency cepstral coefficients (MFCC),
pitch-based, and delta features, are extracted from the input
mixture. Using these features, a deep neural network (DNN)
generates a binary mask by classifying whether a T-F unit is
speech or noise dominant. Unlike [10], temporal dynamics is
not used to generate a binary mask. Also, the binary mask
returned by the DNN is in the gammatone domain, and it is
subsequently converted to the STFT domain for our proposed
approach.

Figure 1 shows the spectrogram for a noisy speech signal
at an SNR of 0 dB, the estimated binary mask (EBM), and
the spectrogram resulting from applying the EBM to the noisy
speech STFT. Notice that the EBM spectrogram is incomplete
where many of the T-F units have been completely removed.

(a) Noisy Speech

(b) Estimated IBM

(c) Speech separated by the EBM

Fig. 1. Spectrograms for the noisy speech signal (a) and the
speech signal separated by the EBM (c). The EBM is shown
in (b), where black indicates that the T-F unit is speech domi-
nant, and white indicates it’s noise dominant.

Estimated speech and noise STFT magnitudes (Ŝ(t, f)
and N̂(t, f)) are generated by applying the gammatone-
domain binary mask and its complement to the STFT of the
mixture, followed by overlap and add synthesis to produce
speech and noise estimates. A ratio mask, RM(t, f), is gen-
erated by using the STFT magnitudes of the speech and noise
estimates:

RM(t, f) =
Ŝ(t, f)

Ŝ(t, f) + N̂(t, f)
(2)

A new STFT magnitude for the separated speech is gener-
ated by applying the ratio mask to the STFT magnitude of the
mixture. A ratio mask is used over a binary mask so that the
resulting STFT is complete.

2.2. Sparse Representations of STFT Magnitude

The STFT magnitude of the separated speech inevitably con-
tains noise elements that may negatively affect the perceptual
quality of the separated speech signal. To combat this effect,
a sparse representation approach is used to denoise the STFT
magnitudes.

The underlying principle behind sparse representations is
that a given signal can be represented as a sparse linear com-
bination of basis vectors [8]. The signal in our domain is
the STFT magnitude X. Given a dictionary (or basis) D ε
RN x K , the STFT magnitude X ε RN x T is approximated as
D∗A, where A ε RK x T . Letting A=[α̂1,α̂2,· · · ,α̂T ], α̂t ε RK

defines the sparse basis vectors from the dictionary, dk’s, that
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are used to represent xt, the tth time frame of X for 1 ≤ k ≤ K
and 1 ≤ t ≤ T, (3). Typically, the dictionary D is underdeter-
mined so K � N.

[
x1 · · · xT

]
≈

[
d1 · · · dK

] [
α̂1 · · · α̂T

]
(3)

The important steps in sparse representations are then
to define the dictionary D, compute the parameters αt for a
given STFT magnitude X, and determine the number of basis
vectors, L, that combine to provide an estimate of X (the
STFT magnitude of the separated speech). The dictionary
D is generated by the concatenation of STFT magnitudes
of clean speech utterances. Given D and X, A is found by
solving the following equation,

α̂t = argmin
α
‖xt−Dα‖22 s.t. ‖α‖1 ≤ L, 1 ≤ t ≤ T (4)

where L is a parameter that controls sparseness. Since the
goal is to approximate the STFT magnitude of speech sepa-
rated by the ratio mask using sparse representations, the only
constraint for L is that it is much smaller than the number of
vectors in the dictionary, i.e., L� K.

With the parameters solved, the STFT magnitude of the
separated speech signal X is approximated by X̂ ≈ D∗A. Un-
like X, X̂ no longer contains noisy T-F units. The approx-
imated magnitude response X̂ is combined with the noisy-
phase information from the mixture, to produce a sparsely-
reconstructed STFT. An estimate of the speech signal is then
produced by performing the overlap-and-add synthesis on the
sparsely-reconstructed STFT.

3. EVALUATIONS AND COMPARISONS

The proposed system is evaluated by employing 100 clean
speech utterances randomly selected from the TIMIT corpus.
Each utterance is approximately 2 to 4-seconds long, and is
sampled at 16 kHz. Each of the speech utterances are mixed
with 10 non-speech noises at a SNR of 0 dB, resulting in a
test set of 1000 mixtures.

The STFT is computed for each mixture. This is accom-
plished by windowing the mixture with a sequence of over-
lapping 20 ms Hamming windows, and then computing the
Fast-Fourier Transform (FFT) of the windowed signal. An
overlap amount of 50% is used between adjacent frames.

In order to perform sparse representations for the STFT
magnitudes, a dictionary must first be generated. The dictio-
nary is generated by concatenating the STFT magnitudes of
clean speech utterances from 110 speakers selected from the
TIMIT corpus. This results in 1000 utterances used to train
the dictionary for sparse representation. Preliminary tests in-
dicated that the number of basis vectors to sparsely represent
a signal should be set to 5 (i.e., L = 5). Also note that the
testing and training sets are disjoint.

PESQ score STOI score
Mixture 1.93 0.76

EBM 1.63 0.72
IBM 3.07 0.92

Table 1. Average PESQ and STOI scores for the noisy speech
signals, speech separated by the EBM, and speech separated
by the IBM.

PESQ Score STOI Score
EBM IBM EBM IBM

Reconstruction [13] 1.69 2.76 0.63 0.87
VQ 0.90 2.12 0.42 0.80

Proposed 2.29 2.84 0.78 0.89

Table 2. Average PESQ and STOI scores for different STFT
magnitude reconstruction approaches, when EBMs and IBMs
are used, respectively.

The speech quality of the sparsely-reconstructed speech
signals are evaluated by PESQ, which is an objective percep-
tual speech quality measure [11]. PESQ scores are between
−0.5 and 4.5, where higher scores correspond to higher per-
ceptual speech quality. A PESQ score is computed by com-
paring the clean speech signal of the mixture against a de-
graded signal (i.e., the output signal after sparse representa-
tions). This is possible because we have access to the pre-
mixed clean signals for each test mixture.

To show the effectiveness of sparse representations for
denoising STFT magnitudes, we compare our system against
two other STFT magnitude reconstruction approaches, namely
missing feature reconstruction [12, 13] and vector quantiza-
tion (VQ) that is based on the approach in [6]. For the missing
feature reconstruction approach [12, 13], a speaker-adapted
Gaussian Mixture Model (GMM) Universal Background
Model (UBM) is trained from the same 1000 utterances that
were used to train the dictionary for sparse representations
[14]. The GMM was modeled with 64 Gaussians and diago-
nal covariance matrices. The codebook for the VQ approach
was also trained with the same 1000 utterances, but in this
case 1024 codewords were used. With missing feature recon-
struction, T-F units that are classified as noise dominant by
the EBM are replaced with estimated values that are based
on the speech-dominant T-F units. In the VQ approach, each
time frame from the STFT magnitude of speech separated
by the ratio mask is replaced by the closest codeword from
the codebook, where closeness is measured in terms of mean
square error.

Table 1 shows the average PESQ score for the baseline
signals, namely the unprocessed mixture, the signal result-
ing from applying the EBM without any further processing,
and the signal resulting from applying the IBM without any
further processing. Notice that applying the EBM without ad-
ditional STFT magnitude reconstruction results in a lowering
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(a) Clean speech

(b) Missing feature reconstruction

(c) Vector quantization

(d) Proposed

Fig. 2. Spectrograms for the clean speech signal (a), missing
feature reconstruction approach (b), vector quantization ap-
proach (c), and the proposed sparse representation approach
(d). The EBM is used for binary masking in each reconstruc-
tion approach

of PESQ score as compared to the original unprocessed mix-
ture, while the IBM results in a substantial improvement of
speech quality. These results indicate the need for a second
stage to improve the PESQ performance from the EBM. The
average short-time objective intelligibility (STOI) scores for
the baseline signals are also shown in Table 1. STOI is a stan-
dard objective measure that quantifies the intelligibility of a
signal [15]. STOI scores are between 0 and 1, where higher
scores indicate higher intelligibility.

The STOI and PESQ scores of the different reconstruc-
tion approaches are shown in Table 2. Notice that the PESQ
scores using missing feature reconstruction and VQ are sig-
nificantly worse than the PESQ scores of the unprocessed
mixtures when the EBM is used as the binary mask. However,
our proposed sparse representation approach leads to a sig-
nificant PESQ improvement over the unprocessed mixtures.
The proposed approach considerably outperforms the stan-
dalone EBM and the other reconstruction approaches. Our
proposed approach also results in a significant improvement
in objective intelligibility compared to the other reconstruc-
tion approaches when the EBM is used as the binary mask,

as indicated by the STOI scores. The proposed approach
also improves STOI performance over the unprocessed mix-
ture slightly, unlike the other reconstruction approaches. It
is worth noting that our approach generates significant PESQ
improvements over binary masking using EBM, and does so
without degrading STOI scores - it actually yields an im-
provement from 0.72 to 0.78.

The sparse representation approach also provides the best
PESQ and STOI performances, compared to the other STFT
magnitude reconstruction approaches, when the IBM is used
for binary masking. However, all of the reconstruction ap-
proaches lower the PESQ and STOI performances when com-
pared to the IBM with no additional processing. This may
occur because the IBM correctly identifies the T-F units that
are speech dominant and noise dominant.

Example spectrograms for each of the reconstruction ap-
proaches are shown in Figure 2, where the EBM was used
for binary masking in each reconstruction approach. Com-
pared to the spectrogram of the clean speech signal, the spec-
trogram of the proposed approach appears to be most sim-
ilar. The spectrogram of the missing feature reconstruction
approach contains a substantial amount of differences from
the clean speech; for example a considerable amount of noise
is added around the 2.5 second mark. Likewise, the result
from the VQ approach tends to smooth out the harmonics of
the clean speech utterance. Although the spectrogram from
our approach appears closest to the clean speech spectrogram,
it still appears to remove some of the harmonic information
from the voiced frames, and the harmonics that are present
are not as distinct as in the clean speech case. Thus, there is
clearly room for improvements.

4. CONCLUSION

In this paper, a novel approach for improving the perceptual
quality of speech separated by a binary mask has been pro-
posed. In this approach, an estimated binary mask is initially
determined by using a DNN classifier. We estimate a new
STFT magnitude by using the property that signals can be
represented as a sparse linear combination of basis vectors.
This proposed approach significantly improves the percep-
tual quality of separated speech, and outperforms other re-
construction approaches. The intelligibility of the separated
speech is also improved according to an objective intelligi-
bility measure. To our knowledge, this is the first study that
uses a sparse representation to denoise STFT magnitudes and
improve perceptual quality of speech separated with binary
masks.
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