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ABSTRACT

In this paper, we extend the pre-image iteration method for speech
de-noising by automatic determination of the kernel variance. The
kernel variance needs to be adapted in different noise conditions. In
previous work, the signal-to-noise ratio (SNR) was assumed to be
known and the kernel variance was pre-defined using a development
set. In the proposed method, a function is derived that maps a noise
estimate to a potentially good value for the kernel variance. Hence,
the SNR is not required to be known. Furthermore, the method is
adapted for scenarios with colored noise, where – due to the prop-
erties of the noise – a different kernel variance for each frequency
leads to better performance. We compare the proposed methods to
the original pre-image iteration method and show an increase in per-
formance in terms of the PEASS quality measures.

Index Terms— Speech enhancement, de-noising, pre-image it-
erations, kernel PCA

1. INTRODUCTION

Speech enhancement is important for many applications such
as speech communications or speech recognition. Algorithms
for speech enhancement can be divided into three main classes:
Spectral-subtractive algorithms, statistical model-based algorithms
and subspace algorithms [1, 2, 3, 4, 5, 6].

Subspace methods – which form the basis for this work – make
use of principal component analysis (PCA) to enhance speech, i.e.,
PCA is applied on the magnitude spectrum and the phase of the noisy
signal is used for the final transformation from frequency to time
domain. The usage of the noisy phase generally works well but can
affect the speech quality at low signal-to-noise ratios.

Recently, we proposed to use kernel PCA, a non-linear extension
to PCA, for speech enhancement [7]. Kernel PCA has been success-
fully applied to image de-noising [8, 9]. In speech processing, ker-
nel PCA has been used to extract robust features from reverberant
speech [10]. In contrast to other speech enhancement methods we
perform enhancement on complex spectral data. Thus we do not ex-
plicitly rely on the phase of the noisy signal. In [11], we derived
a simplification of kernel PCA, called pre-image iterations, which
improves the performance and is computationally less demanding.

The pre-image iteration algorithm performs enhancement in the
spectral domain. It is based on the computation of a linear combina-
tion of noisy feature vectors extracted from the sequence of complex-
valued short-term Fourier transforms (STFTs). The weights for the
linear combination are computed by using a Gaussian kernel, which
measures the similarity between two feature vectors. The de-noising
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ability strongly depends on the variance of the kernel. In previous
work, the kernel variance is set for each signal-to-noise ratio (SNR)
separately. The SNR is assumed to be known and the choice of the
kernel variance is based on the performance on a development data
set. Empirically, however, we found that a good value for the kernel
variance is rather connected to the noise power and not to the SNR.
The SNR rather influences the degradation of the speech signal, i.e.,
when speech components are masked by noise. Furthermore, for
colored noise, it is problematic to use a single value for the kernel
variance as the noise power varies over the frequency range.

In this paper, we automatically set the kernel variance by using
a mapping function derived from the development data. This way,
the kernel variance can be determined without knowing the SNR.
The mapping function maps the noise power to a suitable value of
the kernel variance. The values for the kernel variance used for the
estimation of the mapping function are determined by a combination
of objective quality measures. Using the noise power instead of the
SNR favors a good noise reduction. In the case of colored noise
we determine the kernel variance for each frequency separately to
account for the non-uniform noise distribution over the frequency
range. For each frequency, the equivalent noise power is estimated
to determine the kernel variance from a mapping function learned
from white noise.

The algorithm is tested on two databases at 0, 5, 10, and 15 dB
SNR with two types of noise, i.e., on the air-bone database with
additive white Gaussian noise (AWGN) and the Noizeus database
with car noise. Compared to previous work where the variance was
pre-determined for each SNR we achieve a better or similar per-
formance. As benchmark we present performance results for spec-
tral subtraction and the generalized subspace method. The perfor-
mance achieved with pre-image iterations is superior, in addition the
method does not create musical noise artifacts.

This paper is organized as follows: Section 2 describes pre-
image iterations and the determination of a suitable kernel variance.
Section 3 presents the experiments and the results. Section 4 con-
cludes the paper.

2. PRE-IMAGE ITERATIONS FOR SPEECH
ENHANCEMENT

In [11], we showed that pre-image iterations can be used for speech
enhancement. Pre-image iterations are derived from kernel PCA,
where data samples are transformed to a so-called feature space for
processing. Depending on the kernel there may be no one-to-one
mapping between feature space and input space and the sample in
input space corresponding to a processed sample in feature space
cannot be directly determined. Therefore, the sample has to be es-
timated and the estimate is called pre-image. Several methods have
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been proposed to solve the pre-image problem (see [12]).
Pre-image iterations are based on the simplification of the itera-

tive pre-image method of [8]. In [11], we neglected the kernel PCA
coefficients and de-noising is performed by iteratively applying

zt+1
j =

∑M
i=1 k(z

t
j ,xi)xi∑M

i=1 k(z
t
j ,xi)

, (1)

where ztj is the enhanced sample in input space, t denotes the it-
eration step, xi is the ith original noisy sample, M is the number
of noisy samples in one frequency band (see Section 2.2 for further
details), and k(·, ·) defines the kernel function. The feature vectors
xi are extracted from the complex frequency domain representation
(see Section 2.2). For enhancement of one specific sample xj , z0j
is initialized by xj which results in a robust convergence behavior.
When the difference between zt+1

j and ztj is below a given thresh-
old, the iterations are terminated. Pre-image iterations are equivalent
to forming convex combinations of noisy speech samples.

In [13], a regularization for pre-image estimation was proposed
and the corresponding pre-image iteration equation is
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t
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2
c
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i=1 k(z

t
j ,xi) + λ

, (2)

where λ is the regularization parameter and xj denotes the noisy
sample which is enhanced. We use the Gaussian kernel

k(xi,xj) = exp(−‖xi − xj‖2/c), (3)

where parameter c denotes the variance of the kernel. This kernel
determines the similarity between two data samples where the vari-
ance c is used to scale the degree to which the samples are treated
as similar. The de-noising process is based on the fact that noise is
random and that the feature vectors for noise are all relatively similar
to each other. Consequently, the weights for the linear combination
estimated by the kernel function are similar and the noise is aver-
aged out (in the complex spectral domain). Speech components are
rather dissimilar so they are maintained as long as the SNR is not
too low. From the above equations it can be seen that the value of c
considerably influences the de-noising performance.

2.1. Determination of the kernel variance

Two approaches are used for the automatic determination of the ker-
nel variance, one for AWGN and one for colored noise. In the case
of white noise, a function that maps the noise power to a suitable
value of c is learned from the development set.

To find the mapping function, pre-image iterations are applied
to each sentence in the development set with different values of c
and the enhanced recordings are evaluated using the measures of
the PEASS toolbox [14]. The PEASS toolbox returns four scores:
one for the global quality (OPS - overall perceptual score), one for
the preservation of the target signal (TPS - target perceptual score),
one for the suppression of other signal (IPS - interference perceptual
score), and one for the absence of additional artificial noise (APS
- artifact perceptual score). The scores range from 0 to 100, larger
values denote better performance. Ideally, all measures should be
maximized, however, this is not possible, as, e.g, a good suppression
of the interference (noise) conflicts with a good preservation of the
target signal.

As optimization criterion S for finding the best setting of c, a
linear combination of the four scores is used

S = 0.5 · (OPS +
1

3
(TPS + IPS + APS)). (4)
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Fig. 1. Mapping function for the air-bone data derived by polyno-
mial curve fitting with outliers removed from the data.

Additionally, the IPS score has to be greater than 10 to avoid the
situation where S is large due to good TPS and APS scores but no
de-noising is achieved.

For each speech utterance in the development set, the average
noise power σ2 is estimated from the beginning of the recording,
assuming stationary noise and no speech within this region, i.e.,

σ2 =
1

N

N−1∑
n=0

y[n]2, (5)

where y[n] is the noisy signal in time domain and N is the length
of the frame used for computing the noise power. A frame length
of N = 2048 samples was chosen experimentally. Figure 1 shows
the values for c that are determined by the criterion S plotted as a
function of the estimated noise root mean square (RMS) value σ. To
fit the data a polynomial of degree two is used.

To improve the fit in Figure 1, outliers are removed. The data
points marked by a cross are labeled as outliers since the values of c
are not in the appropriate range for the noise estimate. For instance,
for the data point marked with the arrow, the SNR is 0 dB and the
predicted value of c is 0.5, which is not reliable as previous experi-
ments have shown values around 4 to be a good setting for c at 0 dB
and 0.5 rather suitable for 10 dB SNR.

For colored noise – car noise in our experiments – a single value
for c for all frequencies is not suitable as the noise power is not
equally distributed over the frequency range. To solve this problem,
we first use a development set with utterances corrupted by white
noise to derive a mapping function. For the utterances corrupted by
colored noise we estimate the equivalent noise power at each fre-
quency bin and use it to find the frequency-dependent kernel vari-
ance ck.

The estimate of the noise power for each frequency bin is based
on Parseval’s theorem [15] that states that the mean of the squared
magnitude values of the discrete Fourier transform of a signal Y [k]
is equal to the sum of the squared samples in time domain y[n], i.e.,

K−1∑
n=0

|y[n]|2 =
1

K

K−1∑
k=0

|Y [k]|2 (6)

where a frame of length K leads to a K-point Fourier transform.
White noise is equally distributed over all frequencies and ideally
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Fig. 2. Results of pre-image iterations (PI), pre-image iterations with automatic determination of the kernel variance (PID), the generalized
subspace method (Subspace) and spectral subtraction (SpecSub) in terms of overall perceptual score (OPS), target perceptual score(TPS),
interference perceptual score (IPS), and artifact perceptual score (APS) on the test set of the airbone database corrupted by additive white
Gaussian noise (AWGN).

all Fourier coefficients are equally large. Therefore, in the ideal
case, the energy of the time domain signal can be estimated from
one Fourier coefficient, i.e.,

σ2 =
1

N
· 1
K

K−1∑
k=0

|Y [k]|2 =
1

N
|Y [k]|2 ∀k. (7)

Relying on this relation, we take the Fourier coefficients from col-
ored noise and derive the equivalent noise power σ2

k in time domain
for each Fourier coefficient Y [k].

In particular, 256-point STFTs are computed from 128-sample
frames by application of zero-padding. The squared magnitude bins
|Y [k]|2 are averaged over the first 15 frames to get a more reliable es-
timate. Dividing the average by N gives the equivalent noise power
σ2
k for the kth frequency bin, that is subsequently used to derived a

suitable value for ck from the mapping function.
During processing, frequency bins are grouped to frequency

bands as explained in Section 2.2. For the frequency bins within
one band the values for ck are averaged and this average is used for
pre-image iterations within the band. This way the approach adapts
to all kinds of stationary noise.

2.2. Feature extraction

The sample vectors xi for pre-image iterations are extracted from
the sequence of short-term Fourier transforms computed from the
speech signal. First the 256-point STFT is computed from frames
of 16 ms. The frames have an overlap of 50% and a Hamming win-
dow is applied. The resulting time-frequency representation is split
on the time and on the frequency axis to reduce computational costs
(see Figure 3, left side) which results in so-called frequency bands.
Sample vectors are retrieved from these frequency bands by first ex-
tracting quadratic patches in an overlapping manner, where the size
of each patch is 12 × 12 with an overlap of 11 (see Figure 3, right
side). In previous experiments, windowing of the patches was ben-
eficial, so a 2D Hamming window is applied. Then the patches are
re-ordered in column-major order to form the sample vectors xi. The
frequency bands cover a frequency range corresponding to 8 patches
(i.e. 19 bins) and a time range corresponding to 20 patches (i.e. 31
bins). Bands are not overlapping along the frequency axis, along the
time axis the overlap is 10 patches. This configuration was chosen
due to good empirical results.
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Fig. 3. Spectral detail of the clean utterance /t a sh e/. Left hand
side: Extraction of frequency bands with time overlap of 10 patches.
Right hand side: Extraction of 12 × 12 patches from one frequency
band with an overlap of 10 in time and frequency.

After de-noising, the audio signal is resynthesized by reshaping
the sample vectors zj to patches. The patches of all frequency bands
belonging to one time segment are rearranged using the overlap-add
method with weighting as described in [16] generalized for the 2D
domain. Then the STFT bins of overlapping time segments are av-
eraged, the inverse Fourier transform is applied on the bins of each
frame and the audio signal is synthesized with the weighted overlap-
add method [16].

3. EXPERIMENTS

3.1. Data

The algorithm was tested on two databases: The air-bone database
with utterances corrupted by AWGN and the Noizeus database with
utterances corrupted by car noise. Both databases are tested at 0, 5,
10, and 15 dB SNR. The SNR was computed using the active speech
level as described for the Noizeus database [17]. For estimation of
the mapping function 20 dB were used in addition.

The air-bone database1 consists of recordings of six German

1The recordings consist of two channels: one channel recorded by a stan-
dard microphone and a second recording by a bone-conductive microphone
which is, however, not used in the described experiments.
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Fig. 4. Results of pre-image iterations with frequency-dependent scaling of the kernel variance (PIS), pre-image iterations with automatic
frequency-dependent determination of the kernel variance (PIDF), the generalized subspace method (Subspace) and spectral subtraction
(SpecSub) in terms of overall perceptual score (OPS), target perceptual score(TPS), interference perceptual score (IPS), and artifact perceptual
score (APS) on the test set of the Noizeus database corrupted by car noise.

speaking individuals, three female and three male. Each read 20
sentences which results in a total of 120 sentences. The recording
was done with a close talk microphone and 16 kHz sampling fre-
quency. The development set contains two sentences per speaker,
which results in twelve sentences per noise condition.

The Noizeus database [17] contains recordings of 30 IEEE sen-
tences in English [18], spoken by three female and three male speak-
ers (five sentences each). The utterances are sampled with 8 kHz and
filtered by the modified intermediate reference system (MIRS) filters
[19] to simulate telephone speech. For development, one sentence
per speaker is used, resulting in six sentences per noise condition.

3.2. Results

The performance of the pre-image iteration approach with auto-
matic determination of the kernel variance (PID) is evaluated using
the PEASS toolbox and compared to the standard pre-image itera-
tion approach (PI) as described in [11], to the generalized subspace
method [6] and to spectral subtraction [2]. The regularization pa-
rameter λ in (2) is set to 0.25 for 0 dB and to 0.75 for the other
tested SNRs in case of the air-bone database, in case of the Noizeus
database no regularization is applied.

Figure 2 shows the results for the air-bone database. The overall
performance improves slightly for all tested noise conditions. The
preservation of the target speaker improves for all conditions except
for 0 dB, the other scores are in a similar range.2

Figure 4 shows the performance of pre-image iterations with au-
tomatic frequency-dependent determination of the kernel variance
(PIDF) on the Noizeus database with car noise. As reference, the
PIS method is provided – an adaptation of PI where the variance is
scaled logarithmically over the frequency range [20]. In addition,
results for the generalized subspace method and for spectral subtrac-
tion are shown. The overall performance score for PIDF is larger
than for PIS. The PIDF method results in better target preservation
(higher TPS), however, the noise attenuation is weaker (lower IPS).
In terms of APS the PIDF method is better indicating fewer artifacts.

In addition to objective evaluation, the enhanced utterances were
evaluated by listening.3 The variants of pre-image iterations have in

2The outlier of the IPS for 15 dB can be neglected as the noise is low in
this condition anyway.

3Audio examples are provided on http://www2.spsc.tugraz.
at/people/chrisl/audio/icassp2013

common that they do not produce musical noise, but some resid-
ual noise is present around speech components. For the Noizeus
database, noise is left in some frequency bands. This can be ex-
plained by a suboptimal estimation of the mapping curve. Listening
to the utterances corrupted by AWGN used for development and in-
spection of the evaluation measures revealed that the values of ck
chosen by the score S do not lead to an optimal noise attenuation.
Furthermore the Noizeus utterances corrupted by AWGN are filtered
by the MIRS filter, hence the assumption that the noise is uniformly
distributed over the frequencies is violated. Consequently, the noise
power in the time domain suggests a lower noise level which leads to
an underestimation of ck for colored noise. These issues are subject
to future work.

4. CONCLUSION

In this paper, we presented a generalization to the pre-image iter-
ation method for speech enhancement. When applying pre-image
iterations, the de-noising performance crucially depends on the set-
ting of the kernel variance. In previous work, the kernel variance c
was pre-determined depending on the SNR, which was assumed to
be known. In this paper, the pre-image iteration method is extended
by the automatic determination of c. In particular, we determine a
mapping function from a development set. This enables to derive the
kernel variance from a noise estimate of the utterance. Furthermore,
we showed that we can use the mapping function to generalize to
conditions with colored noise, where different kernel variances over
the frequency range are necessary due to the non-uniform distribu-
tion of the noise power.

We tested the proposed method on the air-bone and the Noizeus
database, which were corrupted by AWGN and car noise, respec-
tively. The performance was evaluated by using the objective quality
measures of the PEASS toolbox. The results of the developed meth-
ods are superior to the results achieved with the pre-image iteration
method [11, 20]. Compared to the generalized subspace method and
to spectral subtraction, the scores are in a similar range while the
score measuring the artifacts is better for the developed methods,
which do not suffer from musical noise.

In future, we aim to investigate further optimization criteria in
combination with other evaluation measures for the derivation of
the mapping function. Furthermore we plan experiments with other
noise types, especially slowly changing noise.
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