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ABSTRACT

The use of full covariance matrices in acoustic modeling is getting
popular, but its huge computational burden in likelihood calculation
is a major issue. Semi-tied covariance matrices are commonly used
to speed-up the computation, where global or phone-based tying of
transforms, or “rotations”, is usually used. However, such tyings are
heuristic, and not necessarily optimal. In this paper, we propose a
Riemannian-geometric approach to optimally tying rotations of co-
variance matrices. We first introduce a tangent space of the Rieman-
nian manifold of covariance matrices, which has an excellent dis-
tance for measuring dissimilarity between covariance matrices. We
then show that covariance matrices having the same rotation to each
other lie on the same subspace in the tangent space. Exploiting this
property, we fit subspaces to samples (covariances) in the tangent
space for finding out clusters of samples that have similar rotations,
and tie them together. By doing so, an optimal tying that minimizes
the sum of “distortions” of covariance matrices can be found. Ex-
perimental results on the Wall Street Journal corpus show a superior
performance of the proposed tying over the conventional ones.

Index Terms— speech recognition, acoustic modeling, full co-
variance, rotation tying, Riemannian manifolds

1. INTRODUCTION

It is well known that acoustic models using full covariances perform
better than those using diagonal covariances, given that the same
number of Gaussians are used [1, 2]. However, two major issues
have prevented them from being deployed in practical applications.
One is the data sparsity problem; when the number of frames as-
signed to a mixture component is not enough, estimation of the full
covariance gets unstable. The other is the huge computational cost
in likelihood calculation. The former is less of a problem now than
used to be as the training data is increasing rapidly, but the latter is
still a big problem.

The semi-tied covariance (STC) [3] is the most common ap-
proach to mitigating this issue, and is used in many of the state-
of-the-art LVCSR systems [4, 5, 6]. Here, covariance matrices are
grouped into classes, and their rotations are tied within each class.
The STC can be implemented as a set of tied feature transforms,
which enables a fast likelihood calculation. To do so, components
are usually grouped according to the phoneme that it belongs to, or
globally tied. However, there is no theoretical reason to believe that
such a grouping is optimal.

In this paper, we propose a Riemannian-geometric method for
grouping and tying rotations of covariance matrices. The space
of covariance matrices is considered as a Riemannian manifold

equipped with the Fisher information metric, and the notion of dis-
tance is defined on the manifold to measure dissimilarity between
covariance matrices. Because algorithms usually get complicated in
Riemannian manifolds (which are curved), its tangent space (which
is flat) is used as a surrogate in this work. We show that in a tangent
space of the manifold, covariance matrices having the same rotation
to each other lie on the same subspace. This property is exploited in
clustering rotations. Specifically, a set of subspaces is fit to samples
(covariances of a given acoustic model) in the tangent space for
finding out clusters of samples that have similar rotations. The class
of each component is then determined according to the result of this
clustering, and rotations are tied within each class.

By determining the grouping of components in a theoretically
grounded manner, the resultant semi-tied covariance gets closer to
the original full covariance, which leads to an improved speech
recognition performance.

2. RELATED WORK

There have been attempts to approximate full covariance matrices
with less complex models for speeding-up likelihood calculation
(and/or mitigating the data sparsity issue). These include the semi-
tied covariance (STC) [3], also known as maximum-likelihood linear
transform (MLLT) [7], extended maximum-likelihood linear trans-
form (EMLLT) [8], and subspace for precision and mean (SPAM)
[9]. Among them, the most commonly used one is probably the
STC, which is used in many systems as described earlier. However,
usually global or phone-based tying is used, which is the issue we
would like to address in this work. In [10], one transform was used
for each tied-state, but the large number of transforms should lead
to a large computational cost, which could be an issue in practical
applications. In [11, 12], Euclidean distance based clustering was
used, but there is no strong reason to believe that those components
that are close in the acoustic space have similar rotations. The most
closely related method to ours is the maximum-likelihood tying of
semi-tied transforms mentioned in [3]. However, the method was
not evaluated in the paper, so a direct comparison with it is difficult.
An attempt to approximately rebuild a full covariance system with a
simpler system was discussed in [13]. This is somewhat similar to
our approach, but they reconstructed it with a diagonal covariance
system, while we do so with a semi-tied covariance system.

3. ROTATION TYING

A covariance matrix can be eigen-decomposed into a rotation matrix
and a diagonal matrix as

Σ = UDU⊤, (1)
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Fig. 1. An example of rotation tying of covariance matrices, where
the feature vector is two-dimensional (n = 2) and the number of
classes is two (K = 2). The dotted ellipses represent Gaussians
with original covariance matrices, while the solid ellipses represent
Gaussians with rotation-tied (or semi-tied) covariance matrices.

where Σ ∈ Rn×n denotes the covariance matrix, U ∈ Rn×n is the
rotation matrix1 (whose columns are the eigenvectors of Σ), D ∈
Rn×n is the diagonal matrix (whose diagonals are the eigenvalues of
Σ), and n is the dimensionality of the feature vector. Rotation tying
is a scheme where rotation matrices are shared among Gaussians
(Figure 1). By using such covariance matrices, likelihood can be
evaluated efficiently. Specifically, the log-likelihood of observation
o for mixture component m is calculated as2

logN (o;µm,UkDmU⊤
k ) = logN (U−1

k o;U−1
k µm,Dm),

(2)

where µm and Dm are the mean and the diagonal matrix of m, and
Uk is the rotation matrix of class k (to which m belongs). By storing
U−1

k µm in the acoustic model, the increase in computational cost
compared with the diagonal covariance case is only K matrix-vector
multiplications in each frame, where K is the number of rotation
classes.

4. RIEMANNIAN FRAMEWORK

In this section, we briefly review the Riemannian framework of co-
variance computation [14, 15], which forms the foundation of our
algorithm proposed in the next section.

4.1. Riemannian manifold of covariance matrices

Let M be the manifold of n-by-n covariance matrices, Σ = (sij),
and θ = (s11, . . . , snn)

⊤ ∈ Rn(n+1)/2 be its coordinate system.
The Fisher information metric is used as the Riemannian metric of
the manifold as

gij(θ) =

∫
∂ log p(x;θ)

∂θi

∂ log p(x;θ)

∂θj
p(x;θ)dx, (3)

where p(x;θ) is a parametric distribution of x with parameter θ.
Specifically, a Gaussian distribution with a constant mean vector

1Strictly speaking, it is an orthogonal matrix; although it is a slight abuse
of language, we call it a rotation matrix in this paper.

2log detUk is omitted because it is always zero for any rotation matrix.

(zero vector), p(x;θ) = N (x;0,Σ(θ)), is used, where Σ(θ) is
the covariance matrix defined by parameter θ. Let γ : [a, b] → M
be a curve on M, and its length is calculated as

L(γ) =
∫ b

a

∥ γ̇(t) ∥ dt =

∫ b

a

√∑
i,j

gij
dθi(t)

dt

dθj(t)

dt
dt. (4)

The distance between two points on M is then defined as the length
of the geodesic (the shortest curve connecting the two points), which
can be calculated as

d(Σ1,Σ2) =

√∑
j

log2(ηj), (5)

where ηj is the j-th eigenvalue of Σ
− 1

2
1 Σ2Σ

− 1
2

1 . The distance has
been shown to be effective in measuring dissimilarity between co-
variance matrices in various tasks. See references [14, 15, 16, 17, 18]
for further details.

4.2. Tangent space

The Riemannian manifold of covariance matrices defined in the pre-
vious subsection is curved, and computation on it is not straightfor-
ward. An alternative approach is to work on its tangent space, which
is flat and computation is much easier. In particular, the tangent
space at identity is used in this work. The tangent space allows sim-
ple and effective computation of covariance matrices, and has been
successfully used, for instance, in DT-MRI (diffusion-tensor mag-
netic resonance imaging) [19, 20].

Mapping a point on the manifold, Σ ∈ M, to the tangent space
is realized by the logarithm map as

log(Σ) =

∞∑
k=1

(−1)k−1

k
(Σ− I)k = U log(D)U⊤, (6)

where we assumed that the covariance matrix is eigen-decomposed
as Σ = UDU⊤, and log(D) is the diagonal matrix consisting of
the logarithms of the eigenvalues. For computational efficiency, we
use a vectorized form of the log-covariance,

ξ = vec (log(Σ)) ∈ Rn(n+1)/2, (7)

where the vectorization operator is defined for matrix argument
X = (xij) ∈ Rn×n as

vec(X) =
(
x11, . . . , xnn,

√
2x12, . . . ,

√
2xn−1,n

)⊤
. (8)

The diagonal elements are concatenated as they are, while the off-
diagonal elements are multiplied with

√
2 to compact the duplicated

elements (xij = xji). It is referred to as a log-covariance vector
hereafter.

The tangent space is a Euclidean space, so standard Euclidean
operations can be used. For instance, calculating a distance on the
Riemannian manifold is computationally costly, as can be seen from
Eq. (5), but in the tangent space it is simply calculated by the Eu-
clidean distance between log-covariance vectors3. Owing to the Eu-
clidean nature, the tangent space allows us to design simple and ef-
fective algorithms of covariance computation.

3In a special case, when the covariance is diagonal, it is trivial to see that
the distance in (5) and the Euclidean distance become exactly the same. A
similar discussion was made in [16].
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5. RIEMANNIAN SUBSPACE CLUSTERING

We propose a method for tying rotations of covariance matrices so
that the sum of “distortions” (distances to the original covariance
matrices) is minimized. A special property of the tangent space is
exploited in our rotation tying algorithm. In this section, we first
show the property, then describe our algorithm.

5.1. Property of the tangent space

The tangent space mentioned above has a special property. Namely,
covariance matrices having the same rotation to each other lie on the
same subspace in the tangent space. This property can be derived as
follows. Assuming that covariance matrix Σ is eigendecomposed as
UDU⊤ as before, the corresponding log-covariance matrix can be
written as

log(Σ) = U log(D)U⊤ =
n∑

j=1

log(λj)uju
⊤
j , (9)

where λj is the j-th eigenvalue of Σ, and uj is the j-th eigenvector
of Σ. Let aj = vec(uju

⊤
j ) and we have

ξ = vec(log(Σ)) =

n∑
j=1

log(λj)aj . (10)

This equation shows that for any covariance matrix having the same
rotation matrix U , the corresponding log-covariance vector lies on
the subspace spanned by {aj}nj=1 derived from the columns of U .
Hereafter, the subspace is simply referred to as “the subspace defined
by rotation matrix U”.

Note that the subspace is invariant to permutation and negation
of column vectors of U . For instance, U1 = [v|w| . . . ] and U2 =
[w|v| . . . ] represents the same subspace, and U3 = [v| . . . ] and
U4 = [−v| . . . ] have the same subspace. If one tries to cluster
rotation matrices directly in a naive way, permutation and negation
will cause serious problems, because standard distance functions,
e.g. the one with the Frobenius norm, dF(U1,U2) =∥ U1−U2 ∥F ,
do not return small values for d(U1,U2) and d(U3,U4), so it is
difficult to put U1 and U2 (or U3 and U4) into the same cluster. In
contrast, our method does not suffer from such issues.

5.2. Clustering

Our rotation tying technique, which we coin Riemannian subspace
clustering (RSC), is developed by exploiting the property of the tan-
gent space. The basic idea is to find similar rotations by fitting sub-
spaces to the given samples (Figure 2).

Algorithm 1 summarizes the procedure of Riemannian subspace
clustering. First, a set of covariance matrices, {Σi}Ni=1, where N
is the number of samples, is given. Each of them is then converted
to the log-covariance vector as ξi = vec (log(Σi)). Then the set of
K subspaces that best fits the log-covariance vectors is found (K is
the number of rotation classes). To do this, subspace clustering [21],
in particular K-planes clustering, is modified and used. Specifically,
the assignment step, where each sample is assigned to the nearest
subspace, and the update step, where each subspace is updated to fit
the assigned samples, are iterated until convergence. Finally, rota-
tions of those covariance matrices assigned to the same subspace are
tied together.

In the assignment step, the distance from sample ξ to the sub-
space defined by U is calculated as ∥ ξ − P (U) ξ ∥, where P (U)
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Fig. 2. Riemannian subspace clustering corresponding to the exam-
ple in Fig. 1. The set of K subspaces that best fits the given samples
are found. All the samples on a subspace have the same rotation.

is the projection matrix to this subspace. The projection matrix is
defined as P (U) = A(A⊤A)−1A⊤, where A = [a1| . . . |an],
and {aj}nj=1 are the basis vectors of the subspace. Here, from
the definition, aj = vec(uju

⊤
j ), we can see that {aj}Nj=1 are or-

thonormal basis vectors, so the projection matrix can be simplified
to P (U) = AA⊤.

The update step is carried out for each subspace as follows. The
sum of squared distances from the assigned samples to the subspace,
J(U), defined below, is minimized with respect to the rotation ma-
trix U ,

J(U) =
∑
ξi∈S

∥ ξi − P (U) ξi ∥
2, (11)

where S is the set of samples assigned to this subspace, and P (U)
is the orthogonal projection matrix derived from U . An algorithm
to minimize objective functions with orthogonality constrains can be
found in [22], and is used to minimize J(U) in this work. Specifi-
cally, a gradient decent method on the Stiefel manifold is used. To
do so, we need partial derivative ∂J

∂U
, but fortunately the projection

matrix is simplified as P (U) = AA⊤, so the partial derivative can
be calculated easily.

Because the rotation-tied covariance is a special case of the
semi-tied covariance4, acoustic models obtained via rotation-tying
can be refined with the re-estimation formula developed for semi-
tied covariance [3].

Algorithm 1: Riemannian Subspace Clustering

Input: A set of covariance matrices, {Σi}Ni=1, and the number of
rotation classes, K

1. For i = 1..N , calculate ξi = vec(log(Σi))

2. For k = 1..K, initialize Uk; for instance, randomly select
one of {Σi}Ni=1 and use its rotation

4The semi-tied covariance matrix is written as Σm = HkDmH⊤
k ,

where Hk is a general linear matrix and Dm is a diagonal matrix. The
rotation-tied covariance matrix is a special case where Hk is an orthogonal
matrix.
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3. Repeat until convergence

(a) For i = 1..N , assign ξi to the nearest subspace

(b) For k = 1..K, update the k-th subspace (Uk) to fit the
assigned samples

4. Output class assignments and rotations {Uk}Kk=1

6. EXPERIMENTS

Experiments were conducted using the Wall Street Journal (WSJ)
corpus to evaluate different types of covariance matrices, includ-
ing diagonal, semi-tied (global, phone-based, and proposed tyings),
and full. The SI-284 set (29,735 utterances) of the WSJ corpus
was used to train acoustic models. Three-state, left-to-right hidden
Markov models were used to represent cross-word triphones, where
2,368 tied-states were used. All the models were trained with the
maximum-likelihood criterion. Mel-frequency cepstral coefficients
of c0 to c12, their ∆, and ∆∆ were used with cepstral mean normal-
ization as features (n = 39). The standard WSJ 5k-word bigram was
used as the language model. The November-92 set (330 utterances)
was used to evaluate the word error rate for each acoustic model.

6.1. Diagonal vs. full covariance

Diagonal covariance acoustic models with 1 to 16 mixture compo-
nents per state were trained in a standard mix-up process. The num-
ber of components per state was incremented by two at a time, and
between each increment, four iterations of B-W re-estimation were
conducted. For each of the diagonal covariance acoustic models,
diagonal covariances were switched to full ones with off-diagonal
elements zero, and four iterations of B-W were added to create a
full covariance acoustic model. In doing so, the full covariance was
smoothed with the diagonal one as proposed in [23]; i.e. the off-
diagonal elements of the covariance were discounted by a scale c

c+τ
,

where c is the count of frames assigned to the component, and τ is
the smoothing constant (set to 100 in this work).

Table 1 shows the comparative results of the diagonal and full
covariance models. For every case, the full covariance performed
significantly better that the diagonal one. Though, the full covariance
cannot be used in practice due to its huge computational cost. A
common way to approximate the full covariance at a low cost is the
semi-tied covariance, which is evaluated next.

Table 1. Word error rates (%) of diagonal and full covariance acous-
tic models on the November ’92 set.

Covariance 1-mix 2-mix 4-mix 8-mix 16-mix
Diagonal 11.62 8.74 6.73 5.66 5.19
Full 6.89 5.51 4.50 4.20 4.00

6.2. Semi-tied covariance with different tyings

For each of the 4- and 8-mix full covariance acoustic models, an
optimal tying structure was found by Riemannian subspace cluster-
ing, and rotations of covariance matrices were tied to create a semi-
tied covariance acoustic model. The maximum-likelihood estima-
tion procedure proposed by Gales [3] was then used to refine the
tied-transforms, and four iterations of B-W were added to finalize the

acoustic model. On the other hand, for comparison, two other semi-
tied covariance acoustic models were made in a conventional way.
Specifically, given the diagonal covariance acoustic model described
above, semi-tied transform(s) were estimated with either global or
phone-based5 tying, and four iterations of B-W re-estimation were
added.

Table 2 shows the word error rate of each acoustic model.
Semi-tied covariance acoustic models fell somewhere in between
the diagonal and full covariance models. The ones with global ty-
ing were significantly better than the diagonal covariance models,
which shows the importance of modeling correlations between fea-
ture dimensions (i.e. rotations of covariances). The phone-based
tying brought only marginal gains over the global tying, which is
a similar result to the one reported in [11]. The result indicates
that naive tying structures cannot bring big gains even though the
number of classes is increased. In contrast, with the same number
of classes, our proposed tying has brought better recognition accu-
racies. Further, by increasing the number of classes to 80, additional
improvements were obtained with the proposed tying. The result led
us to believe that optimally determined tying structures can push the
semi-tied covariance closer to the full covariance, and hence to an
improved recognition performance.

Table 2. Word error rates (%) on November ’92 for acoustic models
with different types of covariance matrices.

Covariance Tying 4-mix 8-mix
Diagonal - 6.73 5.66
Semi-tied Global 5.81 5.34
Semi-tied Phone (40) 5.75 5.31
Semi-tied RSC (K=40) 5.49 4.88
Semi-tied RSC (K=80) 5.25 4.52
Full - 4.50 4.20

7. CONCLUSIONS

A method of tying rotations of full covariance matrices for fast like-
lihood calculation was proposed. Our contribution is twofold. First,
we have shown a property of a tangent space of the Riemannian man-
ifold of covariance matrices; namely, covariance matrices having the
same rotation to each other lie on the same subspace in the tangent
space. Secondly, exploiting this property, we have derived an algo-
rithm called Riemannian subspace clustering for finding and tying
clusters of covariance matrices that have similar rotations. Our tying
performed significantly better than conventional tyings (global and
phone-based) in experiments using the WSJ corpus. Application of
the Riemannian framework is not limited to the one presented in this
paper. We will apply the framework to other problems in acoustic
modeling, speaker adaptation, and robustness in our future work.
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