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ABSTRACT
This paper considers the application of a random projections based
hashing scheme, known as locality sensitive hashing (LSH), for fast
computation of neighborhood graphs in manifold learning based fea-
ture space transformations in automatic speech recognition (ASR).
Discriminative manifold learning based feature transformations have
already been found to provide significant improvements in ASR per-
formance. The motivation of this work is the fact that the high
computational complexity of these techniques has prevented their
application to very large speech corpora. The performance of this
integrated system is evaluated both in terms of computational com-
plexity and ASR word recognition accuracy. Further comparisons
of ASR performance with the well-known linear discriminant anal-
ysis are provided. These results demonstrate that LSH provides the
much needed speed boost to manifold learning techniques with min-
imal impact on their ASR performance, thus enabling the application
of these algorithms to large speech databases.
Index Terms: Locality sensitive hashing, locality preserving dis-
criminant analysis, manifold learning, dimensionality reduction,
speech recognition

1. INTRODUCTION

Manifold learning algorithms have found extensive usage in fea-
ture space transformation and dimensionality reduction techniques
for speech and image analysis [1, 2]. It has been suggested that the
acoustic feature space is confined to lie on one or more low dimen-
sional manifolds [3, 4]. Therefore, a feature space transformation
technique that explicitly models and preserves the local relationships
of data along the underlying manifold should be more effective for
speech processing. Accordingly, multiple studies have demonstrated
gains in automatic speech recognition (ASR) performance when us-
ing features derived from a manifold learning based approach. Tang
et. al. reported gains in ASR performance using features derived
from locality preserving projections (LPP) [5]. In previous work
[6, 7], the authors presented discriminative manifold learning tech-
niques that led to significant improvements in ASR word error rates
(WER) for a speech in noise task as compared to well-known tech-
niques such as linear discriminant analysis (LDA) [8, 9] and LPP.

Despite the advantages, a major criticism against the application
of manifold learning techniques to speech processing has been the
sheer computational complexity of these methods [2,5,10,11]. This
complexity originates from the need to calculate a pair-wise similar-
ity measure between feature vectors to construct nearest neighbor-
hood graphs, which are essential to all manifold learning techniques.
If a given training set consists ofN feature vectors of dimensionality
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d, it would take computational complexity O(dN2) in order to con-
struct the similarity graphs. For large amounts of speech data, where
each corpus can have up to hundreds of millions of feature vectors
each having hundreds of dimensions, O(dN2) is a formidable com-
putational requirements for an algorithm. A number of algorithms
exist for faster but approximate nearest neighbors search such as kd-
trees; however, many of these algorithms reach the complexity of
linear search as the dimensionality of feature vectors increases [12].

This work investigates a randomized algorithm, known as lo-
cality sensitive hashing (LSH) [13–15], for fast construction of the
neighborhood graphs as applied to manifold based feature transfor-
mations in ASR. LSH is particularly well suited for finding near-
est neighbors in high-dimensional speech feature spaces. LSH cre-
ates hashed signatures of vectors in order to distribute them into a
number of discrete buckets such that vectors close to each other are
more likely to fall into the same bucket. For a given query point, the
nearest neighbors search is restricted to data points belonging to the
bucket that the query point is hashed to. LSH can drastically reduce
the computational time, at the cost of a small probability of failing
to find the absolute closest match. In this work, use of LSH provided
a factor of 10 speed-up without sacrificing much ASR performance
for manifold based algorithms. These reductions in computational
complexity should enable application of manifold based approaches
to large speech datasets.

The LSH algorithm is evaluated in the context of the locality
preserving discriminant analysis (LPDA) technique [6]. LPDA at-
tempts to preserve the underlying local sub-manifold based relation-
ships of feature vectors while at the same time tries to maximize a
criterion related to the separability between classes of feature vec-
tors. The LSH scheme is incorporated within the LPDA approach
for fast computation of neighborhood graphs with the expectation
of achieving high computational efficiency with minimum impact
on ASR performance. LPDA is chosen as an example of manifold
learning techniques primarily because of its good ASR performance,
as reported in previous work [6].

The rest of this paper is structured as follows. A review of LPDA
is presented in Section 2, followed by a general introduction to LSH
and LPDA specific implementation details in Section 3. Section 4
provides the experimental study and discussions on the evaluation
of the performance of LPDA with LSH in terms of ASR WER and
training time. This section also discusses the trade-offs between
LSH efficiency and the choice of parameters, and their impact on
ASR performance. Finally, Section 5 concludes the paper.

2. LOCALITY PRESERVING DISCRIMINANT ANALYSIS

This section summarizes the LPDA algorithm. A more details dis-
cussion can be found in [6]. LPDA is a discriminative manifold
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learning technique that attempts to maximize class separability while
preserving local sub-manifold based relationships of the data vec-
tors. The goal of LPDA is to estimate the parameters of a projection
matrix P ∈ Rd×m, with m ≤ d, in order to perform a constrained
transformation of the features from a d-dimensional space onto an
m-dimensional space.

Following the graph-embedding framework [2], LPDA charac-
terizes the underlying manifold by embedding the training feature
vectors, X = {x1, · · ·xN} ∈ Rd, into two undirected weighted
graphs, namely the intrinsic graph Gint = {X,W int} and the
penalty graph Gpen = {X,W pen}. The nodes of the graphs, X ,
represent the feature vectors. Therefore, X is same for both the
intrinsic and penalty graphs. W int and W pen ∈ RN×N are the in-
trinsic and penalty affinity matrices that represent the weights on the
edges connecting the graph nodes. The affinity matrices characterize
the statistical and geometrical similarities of the feature vectors. The
elements of the affinity matrices are defined in terms of a Gaussian
kernel as,

wintij =

{
exp

(
−||xi−xj ||2

ρ

)
;C(xi) = C(xj), e(xi,xj) = 1

0 ; Otherwise
(1)

and

wpenij =

{
exp

(
−||xi−xj ||2

ρ

)
;C(xi) 6= C(xj), e(xi,xj) = 1

0 ; Otherwise
(2)

where ρ is the kernel scale parameter. C(xi) refers to the class or
label of vector xi. The function e(xi,xj) indicates whether xi lies
in the near neighborhood of xj . Closeness to a vector xi can be
measured either by K-nearest neighbors or neighbors within radius
R. In this work, a node xi is connected to the 200 nearest neighbors
belonging to the same class C(xi) in the intrinsic graph, Gint. Sim-
ilarly, in the penalty graph, Gpen, a node xi is connected to the 200
closest neighbors not belonging to the class C(xi).

For a given graph G, a scatter measure is defined in terms of
the target space vectors yi, where yi is obtained according to the
projection yi = P Txi,

F (P ) =
∑
i 6=j
||yi − yj ||2wij (3a)

= 2P TX(D − W )XTP (3b)

where D is a diagonal matrix whose elements correspond to the col-
umn sum of the affinity matrix W , i.e., Dii =

∑
j wij . An optimal

projection matrix P can be obtained by minimizing or maximizing
the scatter in Eq. (3b), depending on whether the goal is to preserve
or discard the concerned graph structure.

In LPDA, the properties corresponding to inter-class compact-
ness are penalized, i.e., the scatter of the penalty graph is maxi-
mized, while the properties inherent to within-class compactness are
preserved, meaning, the scatter of the intrinsic graph is minimized.
To this end, the ratio of the penalty graph scatter measure to that
of the intrinsic graph is treated as a measure of class separability
and graph-preservation. An optimal projection matrix is obtained by
maximizing this measure,

argmax
P

tr
(
(X(Di −W i)X

TP )−1(P TX(Dp −W p)X
TP )

)
(4)

where the subscripts i and p signify ‘intrinsic’ and ‘penalty’ graphs,
respectively [2,6]. Eq. (4) can be solved as a generalized eigenvalue
problem,

(X(Dp −W p)X
T )pjlpda = λj(X(Di −W i)X

T )pjlpda (5)

where pjlpda is the jth column of the linear transformation matrix
P lpda ∈ Rd×m, and is the eigenvector associated with the jth
largest eigenvalue.

One of the biggest issues in applying manifold based techniques
to larger datasets is the very high computational complexity required
for populating the affinity matrices, for instance, W int and W pen

in LPDA. The problem originates from the need to find the nearest
neighbors to all the vectors in the training set. Computational com-
plexity for this search grows in proportion to the square of the num-
ber of training vectors. Therefore, it is important to find a solution
for faster computation of these neighborhoods. One such algorithm,
namely LSH, is discussed in the next section.

3. LOCALITY SENSITIVE HASHING

LSH is a class of randomized algorithms that promise fast nearest
neighborhood search with a high degree of accuracy. A number of
different implementations exist for these schemes [16]. This work
utilizes a particular algorithm that tries to find the nearest neighbors
in the Euclidean space using random projections derived from a p-
stable distribution [14]. Techniques based on LSH have previously
been applied to speech [17]. However, the work in [17] utilized an
implementation of LSH that finds the approximate nearest neighbors
in the cosine correlation space [18]. A general description of ran-
dom projections based LSH algorithm is presented in Section 3.1,
followed by the details related to its implementation and incorpora-
tion with LPDA in Section 3.2. Further discussion on LSH can be
found in [13–15].

3.1. Random Projections based LSH

In this LSH scheme, each vector xi is hashed to an integer value
(bucket) by a family of hash functionsH = {h : Rd → N}. This is
achieved by performing inner-product of xi with a random vector, ā,
and assigning a hash value based on which bucket (segment on real
line) it projects into. The hash function used in this work is given by,

h(x) =

⌊
< ā, x > +b̄

w

⌋
, (6)

where ā is a d-dimensional random vector whose entries are chosen
from a p-stable distribution,w is the width of each segment or bucket
on the real-line and acts as a quantization factor, and the bias, b̄, is
a uniform random number taken from [0, w]. The projection of all
the vectors in this manner results in a chain or table of hash buckets,
each having pointers to one or more vectors. Note that only non-
empty buckets are retained.

It can be inferred from p-stable distributions that for two ar-
bitrary vectors, xi and xj , the distance between their projections,
< ā, xi > and < ā, xj >, is distributed as ||xi − xj ||pZ̄ where
Z̄ is a random variable that follows p-stable distribution [14, 19].
This property guarantees that the aforementioned hash family is lo-
cality sensitive, indicating that, if two points xi and xj are close
together then they should have high probability of collision or hash-
ing to the same bucket Pr[h(xi) = h(xj)] ≥ P1 and if the two
points are far apart then the collision probability should be small
Pr[h(xi) = h(xj)] ≤ P2, where P1/P2 > 1.

For optimal performance, the difference between P1 and P2

should be large. To this end, a number of random projections are
used to create a family of composite hash functions G = {g : Rd →
Nk} such that g(x) = [h1(x), . . . , hk(x)], where hi(x) ∈ H. In-
creasing the dimensionality k of the hash functions improves the
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hashing discriminative power as (P1/P2)k > P1/P2. Effectively, a
large k might result in a higher number of buckets each having fewer
points and in turn, a smaller probability that the query and the near-
est neighbors fall in the same bucket in all k projections. To reduce
the impact of such unlucky hashing, L independent hash tables are
created for which hash functions, g1, . . . , gL, are uniformly chosen
from G. This is motivated by the fact that a true nearest neighbor will
be unlikely to be unlucky in all the projections. By increasing L one
can find the true nearest neighbors with arbitrarily high probability.

After hashing, each data point is represented by a k-dimensional
hash signature. However, comparing these k-dimensional signatures
to detect collisions may still be computationally expensive. To this
end, a second level conventional hashing is implemented to store
the k-dimensional signatures. The table size in the bucket hashing is
chosen to be large enough to ensure, with a high probability, that dif-
ferent signatures lead to different buckets. Such a secondary hashing
further reduces the number of comparisons during collision detection
and bucket lookup from O(k) to O(1).

For a given query q, the search proceeds as follows. First, the
query q is hashed to one of the buckets in each of the L tables.
Then, candidate nearest neighbors to q are gathered by perform-
ing the union of these buckets from all the tables. Finally, the re-
quired nearest neighbors are searched – either selecting theK closest
points for K-nearest neighbors or selecting the points xi such that
||xi − q|| ≤ R for R-nearest neighbors – from these candidates.

3.2. Implementation Details

The conventional LSH algorithm is targeted at applications with a
small query set that is separate from the training set on which LSH
tables are generated. Each query point is hashed to one of the exist-
ing buckets in each of the tables, and then the approximate nearest
neighbors are identified from the union of all such buckets. How-
ever, it is often necessary to search for nearest neighbors for all the
points given in the training set. For example, for the LPDA algorithm
described in Section 2, the nearest neighbors were calculated for all
1.4 million feature vectors from the training set in order to populate
the affinity matrices W int and W pen. This is true for all manifold
learning algorithms. In such cases, it will not be feasible by both
time and resources to re-iterate over the entire training set in order
to find the nearest neighbors for each query. To avoid this issue, this
work has implemented a modified version of the conventional LSH
algorithm. For each hash bucket in the LSH data structure, pairwise
distances are calculated between all hashed vectors in order to create
candidate neighborhood structures for all the points in that bucket.
Then, with reference to given class labels, these candidate neighbor-
hood structures are concatenated to create two separate graphs for
within-class and inter-class distances. Final nearest neighborhood
structures are selected from these candidates.

4. EXPERIMENTAL STUDY AND DISCUSSION

This section describes the experiments performed to evaluate the ef-
fectiveness of LSH for building neighborhood graphs when incorpo-
rated with discriminative manifold learning based LPDA as applied
to ASR feature space transformations. The effectiveness is measured
in terms of reduction in time required to train the LPDA projection
matrix, P , and ASR word error rate (WER) obtained using the trans-
formed features. The results also present ASR performance compar-
ison of LPDA with LSH (LPDA-LSH) to that of linear discriminant
analysis (LDA). Furthermore, the reduction in computational com-
plexity and issues related to the choice of LSH parameters are also

discussed in this section.

4.1. Task Domain and Setup

The experiments in this work are conducted on the European
Telecommunications Standards Institute’s Aurora-2 speech in noise
corpus. Aurora 2 training set contains a total of 8440 noisy utter-
ances collected from 55 male and 55 female speakers. The corpus
was created by adding noise to connected digit utterances spoken in
a quiet environment. As a result, the corpus represents a simulation
of a speech in noise task, and one must be careful when generalizing
these results to the wide range of actual speech in noise tasks.

The ASR system is configured using whole word continuous
density hidden Markov models (CDHMMs) with 16 states per word-
model, plus 3 states for the silence model, and 1 state for the short
pause model. There were 11 CDHMM models and a total of 180
states. Each state is modeled by a mixture of 3 Gaussians. Semitied
covariance (STC) transformations are applied prior to recognition to
account for the correlation introduced to the transformed features by
the LPDA and LDA projections, as described in [6, 20].

Mel-frequency cepstrum coefficients (MFCCs) features – con-
sisting of 12 static coefficients, normalized log energy, ∆-cepstrum
and ∆∆-acceleration – are used for baseline comparison. The trans-
formations, LPDA and LDA, are estimated from 117 dimensional
super-vectors obtained by concatenating 9 vectors of MFCC aug-
mented with log energy. The classes are defined as states of the
CDHMMs. A neighborhood size of Kint = Kpen = 200 is used
for the calculations of affinity matrices, W int and W pen in LPDA.
Systems labeled as LPDA-LSH use LSH for building the nearest
neighborhood graphs. The resultant projection matrix P is then used
to project the 117-dimensional training and test vectors to a 39 di-
mensional space.

4.2. Results

The ASR WER obtained for the aforementioned speech in noise
task are displayed in Table 1. All feature space transformations
and HMMs are trained using training utterances corrupted by a mix-
ture of noise conditions. The test results are averaged over a mix
of utterances corrupted by three noise types, namely Sub.=subway,
Exh.=exhibition hall and car. The table contains ASR WER for four
different feature types for clean testing and four different noise levels
ranging from 20dB to 5dB SNR. The first row in the table displays
the baseline ASR WER obtained when no feature space transfor-
mation is performed. The second row, labeled “LDA”, corresponds
to application of the 117 by 39 dimensional projection matrix ob-
tained by LDA to the concatenated super vectors. The third row
presents ASR WER results for features obtained by LPDA transfor-
mation. Finally, the last row, labeled “LPDA-LSH” refers to ASR
results when LPDA transformation is obtained while using the fast
LSH scheme for nearest neighbors calculations. Note that for all but
baseline features STC transforms are estimated to minimize the im-
pact of the data distributions resulting from the feature space trans-
formations.

When comparing ASR performance of LPDA-LSH with that
of LPDA in Table 1, it can be seen that LPDA-LSH shows al-
most no impact on ASR performance as compared to LPDA in high
SNR cases. However, ASR performance of these randomized algo-
rithms seems to be affected by the presence of noise. By compar-
ing the ASR performance of LPDA-LSH with LDA it can be seen
that LPDA-LSH produces improved ASR performance over LDA
in most noise conditions. Many additional approaches for discrim-
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Table 1. WER for mixed noise training and noisy testing on Aurora-
2 speech corpus for Baseline, LDA, LPDA and LPDA-LSH.

Features SNR (dB)

Clean 20 15 10 5
Baseline 1.88 3.03 3.73 6.10 12.31
LDA 1.98 2.57 3.35 5.98 14.18
LPDA 1.44 2.23 3.23 5.71 12.77
LPDA-LSH 1.45 2.20 3.28 5.67 14.28

inative feature space transformations have been proposed including
heteroscedastic linear discriminant analysis (HLDA) [21], which al-
lows for unequal class specific covariances. No direct comparisons
between LPDA and HLDA are presented here, primarily because of
performance similarities which have been observed between HLDA
and LDA when STC transformations are applied in HMM [22].

The results in Table 1 are obtained using a training set which
contained a total of 1.4 million vectors of dimensionality 117 ex-
tracted from 8440 utterances. The execution times reported for all
techniques are obtained using the same multi-core computing sys-
tem. The time taken in training the projection matrices for LDA,
LPDA, and LPDA-LSH are 90 seconds, 26 hours, and 2.5 hours,
respectively. LSH helps speed up the LPDA transformation by re-
ducing the total time from 26 to 2.5 hours, thus providing a factor
of 10 speed up. This remarkable increase in computational boost
should enable the application of manifold learning based feature
space transformation techniques to generally large speech databases.

4.3. Computational Analysis

Application of LSH reduces the computational complexity for cal-
culating nearest neighbors from O(dN2) to O(dkNL) +O(dN2

B),
where d = dimensionality of feature vectors, N = total number of
feature vectors, NB = average number of points in each bucket,
k= dimension of hash functions g(x), and L= number of hash ta-
bles. Note that this is a significant improvement as NB can be
several orders of magnitude smaller than N . In this work, com-
pared to N = 1.4 million, NB had a value in the range of 60 for
w = 5, L = 6 and k = 3.

4.4. LSH Parameterization vs Performance

There are three main parameters that affect the performance of LSH,
the quantization factor, w, the number of projections or dimensions
of the hash function, k, and number of tables, L. The parameter w
controls the width of the buckets and hence the probability of col-
lision for any two points. A large w results in large buckets, thus
an increase in the false collisions and computational complexity. It
has been observed in other domains that a small positive value of w
suffices to achieve optimal LSH performance and larger values do
not have a huge impact on accuracy [15]. In this work, w = 5 is
found to provide good LSH performance. Increasing the dimension-
ality of the hash functions, k, improves the hashing discriminative
power, hence effectively decreasing the probability of collision of
two points. It represents a trade-off between the time spent in com-
puting hash values and time spent in pruning candidate neighbors to
find the nearest neighbors from a bucket. In this work, values of k
are searched in the range of 1 to 10. Some of these results are pre-
sented in Figure 1 that shows a trade-off between the time required
for training the LPDA projection matrix and ASR performance. Best
performance is observed for k = 3 with significant reduction in
training time. Using value of k < 3 did not provide worthwhile
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Fig. 1. Impact of varying the dimension, k, of hash functions on
ASR performance and LPDA training time. For these experiments
w = 5 and L = 6 were fixed.

gains in computational complexity. Increasing L should increase the
probability of finding accurate nearest neighbors, however, compu-
tational complexity also increases. This is because more tables mean
more projections to perform and more buckets to scan. In this work,
a suitable value of L is searched in the range of 1 to 6. Figure 2
presents a graph of average ASR WER versus the number of tables
for the dataset described in Section 4.1 with reference to the WER
from LPDA without LSH. For these experiments, the training time
of LPDA-LSH increases from 0.6 to 2.5 hours with the increase in
L. Since L = 6 provides near-optimal ASR performance, a higher
value for the number of tables are not investigated.
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Fig. 2. Impact of varying the number of tables, L, of LSH on ASR
performance. For these experiments w = 5 and k = 3 were fixed.

5. CONCLUSION

This paper has investigated the application of a fast approximate
nearest neighbor search algorithm, known as locality sensitive hash-
ing (LSH), in conjunction to a recently proposed discriminative man-
ifold learning technique, locality preserving discriminant analysis
(LPDA). ASR WER and execution times were reported for LPDA
with and without LSH. Performance comparisons were also made
between these approaches and the more widely used LDA. It was
demonstrated that LSH provides the much needed speed boost to
manifold learning techniques with minimal impact on their ASR
WER performance. These results should enable the application of
manifold learning algorithms to large speech databases.
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[16] Loı̈c Paulevé, Hervé Jégou, and Laurent Amsaleg, “Locality
sensitive hashing: A comparison of hash function types and
querying mechanisms,” Pattern Recognition Letters, vol. 31,
no. 11, pp. 1348–1358, Aug. 2010.

[17] Aren Jansen and Benjamin Van Durme, “Efficient spoken term
discovery using randomized algorithms,” in 2011 IEEE Work-
shop on Automatic Speech Recognition & Understanding, Dec.
2011, pp. 401–406.

[18] Moses S. Charikar, “Similarity estimation techniques from
rounding algorithms,” Proceedings of the thiry-fourth annual
ACM symposium on Theory of computing - STOC ’02, p. 380,
2002.

[19] V. M. Zolotarev, “One-Dimensional Stable Distributions,” in
Vol. 65 of Translations of Mathematical Monographs. Ameri-
can Mathematical Society, 1986.

[20] M. J. F. Gales, “Adapting Semitied Full Covariance Matrix
HMMs,” Tech. Rep., Cambridge University, UK, 1997.

[21] Nagendra Kumar, Investigation of silicon-auditory models and
generalization of linear discriminant analysis for improved
speech recognition, Ph.D. thesis, Johns Hopkins University,
Baltimore, MD, 1997.

[22] M. J. F. Gales, “Maximum likelihood multiple subspace pro-
jections for hidden Markov models,” IEEE Transactions on
Speech and Audio Processing, vol. 10, no. 2, pp. 37–47, 2002.

6999


