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ABSTRACT

This paper presents the results of our experiments on bottle-
neck feature applied to a wMVDR (Warped Minimum Vari-
ance Distortionless Response) frontend. We examine how
to best optimize wMVDR-BNF features and wMVDR com-
bined with MFCC bottleneck features (wWMVDR+MFCC-
BNF).

Our wMVDR+MFCC-BNF frontend improves a single
pass system from 18.7% (20.7%) to 18.1% compared to a
MFCC-BNF (MFCC) system tested on the Quaero 2010 Ger-
man evaluation set.

When used in a system combination our wMVDR-BNF
and wWMVDR+MFCC-BNF systems reduced the overall WER
from 14.3% to 13.3% on the IWSLT 2010 test set while at the
same time reducing the number of systems needed from 9 to
5. Our result of 11.9% on the 2012 IWSLT testset is better
than the best result submitted during the evaluation campaign.

Index Terms— Speech recognition, ASR, BNF, MLP,
wMVDR

1. INTRODUCTION

In many circumstances Warped Minimum Variance Distor-
tionless Response (WMVDR) features for speech recognition
have been shown to be better [1] than MFCC features. Basic
linear prediction tends to overemphasize the harmonic peaks
seen in medium and high pitched voices. Minimum vari-
ance distortionless response [2] (MVDR) solves this problem
and is improved by (mel)-warping the frequency axis prior to
spectral estimation. This allows for more parameters in the
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low frequency regions of the spectrum and fewer in the high
frequency regions [3].

Mutiple projects [4, 5] at KIT have used both wMVDR
features and MFCC features as accoustic frontend because
they complement each other well, resulting in better LVCSR
(large-vocabulary continuous speech recognition) systems.
In recent years a lot of work as been carried out that show
multilayer perceptrion (MLP) features and bottleneck fea-
tures (BNF) in particular to be useful when applied to MFCC,
PLP and other frontends [6, 7]. In this paper we will in-
vestigate and optimize their performace on wMVDR and
wMVDR+MFCC features and examine how these features
perform when combined with each other and with other fea-
tures. The techniques described in this paper are evaluated
for both German (Quaero) and English AWSLT/TED).

Part 2 of this paper presents a quick overview of bottle-
neck features including related work and how we set up and
trained our bottleneck features. In order to evaluate our fron-
tends we have to use them to train acoustic models. Section
3 describes how this is accomplished in our case. Section 4
describes the system we use to test our frontends and how
we optimized our features. Our final results are presented in
section 5 with a conclusion in section 6.

2. BOTTLENECK FEATURES

A typical setup involves training a neural network to recog-
nize phones (or phone-states) from a window of ordinary (e.g.
MFCC) feature vectors. With the help of a hidden bottleneck
layer the trained network can be used to project the input fea-
tures onto a feature with an arbitrarily chosen dimension. An
extension to this basic setup proposed in [8] uses multiple
long term MLP-features (up to 1s) and combines them using
a final MLP. Another hierarchical setup is proposed in [9] uses
MRASTA features.

A method of using BNFs to combine multiple feature
streams proposed in [10] shows that combining MFCC, PLP
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Fig. 1. Example MLP architecture (4kx2k): A 9 frame con-
text window, each with 20 wMVDR coefficients, was used as
the input feature. The 147 node target layer (one node per
subphone) and the 2k 3rd hidden layer were discarded after
the MLP was trained. A 9 frame context window of the MLP
output at the 42 node bottleneck layer is then used as the new
372 dim BNF feature which is reduced back to 42 using an
LDA.

and gammatone features in the input layer of an MLP can lead
to a system that performs better than the system combination
of the lattices of the individual systems. In [11] bottleneck
features are pretrained using stacked restricted Boltzmann
Machines which improved the performance of the thereafter
trained MLP.

2.1. wMVDR-BNF and wWVDR+MFCC-BNF

All audio was sampled at 16kHz, with a 16ms window size,
10ms frame shift and a frame size of 20 coefficients. Between
1 and 15 consecutive frames are concatenated to form the in-
put of the MLP. To provide a comparison an MFCC-MLP sys-
tem using the same parameters is trained in parallel for each
wMVDR-MLP system. The inputs for the wMVDR+MFCC
MLP are derived by concatenating the inputs of the wWMVDR
MLP and the MFCC MLP.

The output layer of the MLP is set to the number of phone
states in our ASR system. For our German system this re-
sults in an MLP with an output layer containing 147 nodes,
an input layer between 20 and 300 nodes for the wMVDR
and MFCC MLPs and between 40 and 600 nodes for the
wMVDR+MFCC MLPs.

2.2. Training Data

The English BNFs (and acoustic models) were trained on the
following data:

e 237 hours of Quaero training data from 2010 to 2012.

e 157 hours of data downloaded from the TED talks web-
site, including the subtitles provided by the TED con-
ferences archive

For the German BNFs we had 2 sets of audio data, the first
set (set 1) of 188 hours contained mostly data provided by
Quaero for acoustic model training purposes. The second set
(set 2) contained over 360 hours and included EPPS data and
transcripts of lectures held at the KIT. This set was only used
for pretraining the German BNFs.

2.3. MLP Topology and Training

All MLPs used a 42 node bottleneck as the 2nd hidden layer.
Our 2k MLPs contained a 2000 node hidden layer between
the bottleneck layer and the input layer. This layer had 4000
nodes in our 4kx2k MLPs which also included a 3rd hidden
layer with 2000 nodes between the bottleneck and output lay-
ers. Further increases in layer sizes decreased the MLPs per-
formance. The ratio of 2:1 between the Ist and 3rd hidden
layers is motivated by [7]. We performed pretraining on the
German MLPs by training first on all available German audio
data (sets 1+2) and then fine-tuning with only the in-domain
data (set 1). MLP trainng was preformed with Quicknet [12]
on both GPUs and CPUs.

3. ACCOUSTIC MODEL

For a given frontend our standard method of training an
acoustic model requires first performing an LDA on stacked
input features. We use a stack size of 15 for the MFCC and
wMVDR features and 9 for all types of bottleneck features.
We used a context dependent quinphone setup with three
states per phoneme, and a left-to-right topology without skip
states. All models use 6000 (German) or 8000 (English) dis-
tributions and codebooks and were trained using incremental
splitting of Gaussians (MAS) training, followed by optimal
feature space training and Viterbi training. All models use
vocal tract length normalization (VTLN). In addition to that,
feature space constraint MLLR (cMLLR) speaker adaptive
training was applied on top.

We did not include discriminative training in our standard
AM training setup due its high demand for computational
resources. Our Quaero 2012 German evaluation system in-
cluded bMMIE trained models which resulted in our MFCC
system improving from 20.69% to 19.90% and our MFCC-
BNF system improving from 18.82% to 17.80%. Other sys-
tems showed a similar consistent improvement. This observa-
tion allows us to compare frontend performance without dis-
criminative training.

4. EXPERIMENTAL SETUP

We tested our features primarily on the German 2010 Quaero
evaluation set [13] which contains about 3 hours of broad-
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Fig. 2. Evaluation of the effects of different input layer dimen-
sions for MFCC-BNF, wMVDR-BNF and wMVDR+MFCC-
BNFs. The 4kx2k toplogies were not tested with input sizes
smaller than 7 stacked frames. Tested on the German Quaero
2010 evaluation set.

cast news and conversational speech. The configurations that
worked best on the German task were applied to our IWSLT
2012 submission system [14].

The decoding was performed with the Janus Recognition
Tool-kit (JRTk) developed at Karlsruhe Institute of Technol-
ogy and Carnegie Mellon University [15]. In the first pass
and single system setups the acoustic models are adapted us-
ing incremental VTLN [16] and incremental fMLLR [17] on
a per speaker basis.

Our multi-system decoding strategy is based on the princi-
ple of system combination and cross-system adaptation. Sys-
tem combination works on the principle that different systems
commit different errors that cancel each other out. Cross-
system adaptation profits from the fact that the unsupervised
acoustic model adaptation works better when performed on
an output that was created with a different system that works
approximately equally well [18]. The final step in our sys-
tem decoding setup is a confusion network combination of
the second pass systems followed by a ROVER combination.
[19].

4.1. Experimental Optimization of wMVDR-BNF Fea-
tures

Intuitively one may assume that larger input vectors, derived
from a larger stack on consecutive frames, should contain
more information and should therefore result in better BNFs.
We tested our 2k BNFs on context windows of 1-15 and our
4kx2k BNFs on context windows of 7-15. As can be seen in
figure 2 the smaller context windows of 1-5 perform poorly.
With the exception of the 2k-MFCC-BNF system all systems
seem to perform best at or around a window size of 9 frames.

The German training set 2 contained a lot of out of do-
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MFCC-BNF 2k 22.86 - 19.83 | 19.98
wMVDR-BNF 2k 19.92 - 20.28 | 20.88
wMVDR+MFCC 2k 19.58 - 19.81 | 19.38
MFCC-BNF | 4kx2k || 18.69 | 18.53 || 18.83 | 18.45
wMVDR-BNF | 4kx2k || 18.64 | 18.18 || 18.95 | 18.84
wMVDR+MFCC | 4kx2k | 18.11 | 17.81 19.79 | 18.38

Table 1. Comparision of all 3 frontends with and without

pretaining on various input sizes and toplogies. Tested on the

German Quaero 2012 evaluation data.

system | WER | improvement
MFCC baseline | 20.67% -
wMVDR baseline | 20.91% -
MFCC-BNF | 18.69% 9.7%
wMVDR-BNF | 18.64% 9.9%
wMVDR+MFCC-BNF | 18.11% 12.5%
pretrained MFCC-BNF | 18.53% 10.4%
pretrained wWMVDR-BNF | 18.18% 12.1%
pretrained wMVDR+MFCC-BNF | 17.81% 13.9%

Table 2. Results of our best systems for each frontend with
and without pretaining compared to baseline MFCC and
WMVDR systems. Tested on the German Quaero 2012 evalu-
ation data.

main and poorly transcribed audio. Including this data de-
graded the performance of both our acoustic model training
and BNF frontend. Table 1 shows that this data can still help
improve system performance when used to pretrain the MLPs
as described in section 2.3. For the 2k setup pretraining either
only improves the performance or decreases the performance.
The larger 4kx2k BNF are all significantly improved by using
pretraining. The 15 frame wMVDR+MFCC frontend in par-
ticular went from being the worst 15 frame 4kx2k frontend
without pretraining to being the best 15 frame 4kx2k with
pretraining. In general the trend seems to be that larger MLPs
benifit more from pretraining than smaller MLPs.

5. RESULTS

The results of our single system experiments are compared
to baseline MVDR and MFCC systems in table 2 and show
that all our systems significantly outperform the baseline
MFCC system. Compared to the best MFCC-BNF system
our best wWMVDR-BNF system only decreased the WER
slightly from 18.53% to 18.18% (2% relative) whereas our
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system (subsystems) | test2010 | test2012
KIT©9) | 143% 12.7%
KIT+NAIST (18) | 14.4% 12.4%
best submission - 12.1%
wMVDR-BNF + MFCC-BNF(4) | 13.6% 12.3%
+wMVDR+MFCC-BNF (5) | 13.3% 11.9%

Table 3. Results of the KIT systems on the 2012 IWSLT de-
velopment set (test2010) and evaluation set (test2012). Our
improved wMVDR-BNF and wMVDR+MFCC-BNF systems
reduced the WER on both test sets significantly while at the
same time allowing us to use fewer systems.

best WMVDR+MFCC system was able to achieve a relative
improvement of 3.9% resulting in a decrease of WER from
18.53% to 17.81%.

The baseline KIT IWSLT system mentioned in table 3
consists of 9 individual systems trained with different fron-
tends and different phone sets. Some of the frontends were
unoptimized small BNFs. The KIT+NAIST system setup also
included a second LM. Our wMVDR-BNF + MFCC-BNF
system keeps the baseline WMVDR and MFCC system from
the KIT submission setup and replaces all the other systems
with a non-pretrained 4kx2k wMVDR-BNF system and an
equivalent MFCC-BNF system. The 4 system setup reduces
the WER from 14.3% to 13.6% on the test2010 data and from
12.7% to 12.3% on the test2012 data. A further reduction
to 14.3% and 11.9% can be achieved when a non-pretrained
4kx2k wMVDR+MFCC-BNF system is added as a Sth sys-
tem into the setup.

6. CONCLUSIONS

In this paper we present our WM VDR-BNF and wMVDR+MFCC-

BNF features and describe how best to optimize them. Larger
MLPs in particular can be improved a lot by pretaining the
MLP on out of domain and poorly transcribed data. We
showed that ASR systems based on these features signifi-
cantly outperform both baseline MFCC and wMVDR sys-
tems and even outperform an optimized MFCC-BNF system.
When used in a system combination setup our new frontends
complement each other well allowing us to improve the per-
formance of our 2012 IWSLT submission by 1% absolute
while at the same time reducing the number of individual
system. Our WER of 11.9% on the test2012 data is better
than the best system submitted during the September 2012
IWSLT campaign. We have also successfully used intermedi-
ate results of this work in our 2011 and 2012 German Quaero
evaluation systems. In 2011 our setup was the best German
system and in 2012 our setup had the best case dependent
WER and the 2nd best case independent WER.
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