
PHONE RECOGNITION WITH DEEP SPARSE RECTIFIER NEURAL NETWORKS

László Tóth

MTA-SZTE Research Group on Artificial Intelligence

Hungarian Academy of Sciences and University of Szeged

tothl@inf.u-szeged.hu

ABSTRACT

Rectifier neurons differ from standard ones only in that the

sigmoid activation function is replaced by the rectifier func-

tion, max(0, x). This modification requires only minimal

changes to any existing neural net implementation, but makes

it more effective. In particular, we show that a deep archi-

tecture of rectifier neurons can attain the same recognition

accuracy as deep neural networks, but without the need for

pre-training. With 4-5 hidden layers of rectifier neurons we

report 20.8% and 19.8% phone error rates on TIMIT (with CI

and CD units, respectively), which are competitive with the

best results on this database.

Index Terms— Deep neural networks, sparse rectifier

neural networks, phone recognition

1. INTRODUCTION – RELATION TO PRIOR WORK

Neural networks have long been present in speech recogni-

tion [1]. However, researchers almost exclusively used net-

works with only one hidden layer, and they increased the size

of this layer when hoping for increased performance. It has

been realized only recently that adding more hidden layers

can be more efficient. However, the conventional backprop-

agation algorithm has difficulties with training this kind of a

deep architecture [2]. As a solution, Hinton et al. presented a

pre-training algorithm that works in an unsupervised fashion

[3]. After pretraining, the backpropagation algorithm can find

a much better local optimum even with 7-8 hidden layers [4].

Since their invention, a lot of effort has been made to scale

up deep networks to much larger datasets and large vocabu-

lary tasks [5, 6, 7]. Even when implementing the algorithms

on a GPU, pre-training can take up a considerable amount of

time. For example, Yu et al. mention 62 hours of pre-training

and 17 hours of fine-tuning for a 24-hour training data set [6].

Thus, any method that can simply skip pre-training without

sacrificing performance is worth examining.

This publication was supported by the European Union and co-funded

by the European Social Fund. Project title ”Telemedicine-focused research

activities in the fields of mathematics, informatics and medical sciences”,

project number: TÁMOP-4.2.2.A-11/1/KONV-2012-0073.

Here, we study one such promising alternative: deep

sparse rectifier neural networks. Compared to conventional

neural nets, they differ only in the type of the activation func-

tion used. However, this slight modification seems to enable

them to learn deep structures more efficiently than standard

neural nets. They were proposed not long ago, and, to our

knowledge, have thus far been employed only for image

recognition and NLP tasks [8]. To justify their applicability

to speech recognition as well, here we evaluate them on the

classic TIMIT phone recognition task.

2. RECTIFIER NEURAL NETS

Rectifier neural units were recently successfully applied in

standard neural networks [8], and they were also found to

improve Restricted Boltzmann Machines [9]. Conventional

neural nets and rectifier neural nets differ in only one funda-

mental respect; namely, the type of activation function used:

instead of the usual sigmoid or hyperbolic tangent activation,

we apply the rectifier function max(0, x) for the hidden neu-

rons. Fig.1. illustrates the differences between the rectifier

and the tanh activation functions (the more popular sigmoid

is just a scaled and shifted version of tanh).

Fig. 1. A comparison of the tanh and the rectifier activations.

As can be seen from comparing the two functions, there

are two fundamental differences. One is that the output of

rectifier neurons do not saturate as their activity gets higher.

We think that this is very important in explaining their good

performance in deep architectures: because of this linearity,

their is no gradient vanishing effect. The other difference is

the hard saturation at 0 for negative activity values. This has

6985978-1-4799-0356-6/13/$31.00 ©2013 IEEE ICASSP 2013

the effect that for a given input only a subset of neurons are

active. One may hypothesize that this may harm optimization

by blocking gradient backpropagation, but the experimental

results do not support this hypothesis: it seems that the hard

nonlinearities do no harm as long as the gradient can prop-

agate along some paths [8]. One would also expect that the

initialization is crucial in this respect. Fortunately, the method

is not as sensitive to the initialization as one might think. A

closely related intriguing result that may give an explanation

is by Vinyals and Deng [10]. They propose a sparse coding of

the spectral vectors xi by using the formula

max(0,DT xi − α),

where the vectors of DT form a coding dictionary, and α con-

trols the amount of sparsity introduced. Notice that this is al-

most exactly what a layer of rectifier neurons compute: the

elements of DT correspond to the weights and α corresponds

to the bias. The only difference is that we allow a separate

bias for each weight vector. The most important observation

of [10] is that a random choice of the dictionary is almost

as good as using a sophisticated method. Indeed, we found

that after randomly initializing the weights and tuning only

the biases, learning starts from a much lower error rate than is

usual for sigmoid nets. It requires more study to see whether

initializing the weights with some dedicated method (such as

the OMP1 algorithm proposed in [10]) instead of doing it ran-

domly can yield improved results and/or faster convergence.

Another conclusion of [10] is that applying a simple

“shallow” learner to the sparse-coded data is not as efficient

as some deep learner. Rectifier neural nets offer a simple way

of deep learning by stacking sparse coders on each other and

then fine-tuning the resulting deep structure by backpropaga-

tion. Notice that deep rectifier nets are also computationally

cheaper than conventional nets, as the exponential in the acti-

vation function does not have to be calculated. Based on our

measurements, the computation of the sigmoid activation can

take 10-15% of the processing time in a non-GPU (e.g. Math

Kernel Library) implementation, and some authors take great

pains to optimize it even in a GPU environment [11].

2.1. Potential Problems

Thus far we have talked only about the advantages of rec-

tifier nets. There is, however, a potential problem that may

arise: the activations might grow without limit, due to the

unbounded nature of the activation function. To handle this,

Glorot et al. propose to scale the activations to bound them

between 0 and 1 [8]. We decided to scale the weights in-

stead, so that the L1 norm of each layer remains the same as

it was after initialization. What makes this possible is that for

a given input the subset of active neurons behaves linearly, so

a scaling of the weights is equivalent to a scaling of the acti-

vations (of course, apart from the final softmax layer). As a

possible alternative, we also found that weight decay provides

an equally good performance, and it is a standard technique

in neural networks [12]. Notice that weight decay is not much

different from our solution, as it also consists of weight scal-

ing, but the scaling factor is controlled by a meta-parameter,

and not by the L1 norm of the weights. Also, the compu-

tational cost of both methods is much smaller than what we

gain from the omission of the sigmoid activations.

2.2. Improvement by Enforcing Sparsity

There is a consensus that enforcing the sparsity of a represen-

tation can improve the classification performance (see, e.g.

[8, 13, 14, 7]). The rectifier activation function inherently in-

duces sparsity. For example, after a random initialization of

the weights, about 50% of the units are already inactive for an

average sample, and this ratio can be easily increased by in-

troducing a sparsity-inducing penalty term on the activations

during training. That is, the target function will look like

E + λ

N
∑

j=1

ρ(aj),

where E is the standard cross-entropy cost, and ρ(aj) is the

sparsity penalty on activation aj . Two examples of a proper

penalty term are the L1 penalty, as recommended by Glorot

[8], and the log(1+a2

j) function, as used by Sivaram [14]. We

experimented with both, and found no significant difference

between them. The results reported were all obtained with

the latter. In each case, the penalty term is applied to all the

hidden neurons (that is, rectifier neurons), and not just to the

lowest layer, as in [14]. Also, thanks to the rectifier function,

the reported sparsity values mean the ratio of true zeros in the

activations, and not a calculated sparsity measure, as in [14].

When applying sparsity, the meta-parameter λ has to be

tuned. While experimenting with its value, we found that

enforcing sparseness from the beginning of the training is

harmful. The sparseness penalty proved to be the most effec-

tive when turned on only after a couple of epochs, when the

weights are relatively stable. This is in accordance with the

findings of [7]. In the results reported, λ was set to 0.001, and

sparsity was turned on after 7-9 iterations through the training

data.

3. EXPERIMENTAL SETTINGS

The results reported are phone recognition errros on the well-

known TIMIT database. The training set consisted of the

standard 3696 ‘si’ and ‘sx’ sentences, while testing was per-

formed on the core test set (192 sentences). A random 10%

of the training set was held out for validation purposes, and

for tuning the meta-parameters. We will refer to this block

of the data as the ‘development set’. All the experiments use

a phone bigram language model estimated from the training

data. The 61 phone labels are mapped to the usual set of 39

6986

Fig. 2. Phone error rate as a function of the number of hidden

layers for MFCC features. Results are shown for the develop-

ment and the core test sets, with and without sparsity penalty.

labels only for evaluation; that is, after decoding. This means

that during the training of context-independent (CI) 3-state

phone models we worked with 61 · 3 = 183 states. To be able

to train context-dependent (CD) phone models as well, the

decision tree-based state clustering tool of HTK was applied,

resulting in 858 tied states. In both the CI and CD case, the

training targets for the neural net (i.e., the state-level labeling

of the frames) were obtained by training a conventional HMM

(using HTK) and then a forced alignment was performed with

it. During decoding no effort was made to fine-tune the lan-

guage model weight and the phone insertion penalty parame-

ters, they were just set to 1.0 and 0.0, respectively.

Two types of techniques were applied for preprocessing.

First, we experimented with the standard MFCC coefficients,

extracted from 25 ms frames at 10 ms frame skips. We used

13 MFCC coefficients (including the 0th one), along with the

corresponding ∆ and ∆∆ values. Then we also tried to use

the mel filter bank outputs directly. Mohamed et al. got better

results with these features [4], and they also gave an analy-

sis of the possible reasons behind this [15]. We had the op-

portunity to work with exactly the same features as they did

in [4], as they kindly gave us the corresponding HTK con-

fig file. This preprocesing method extracted the output of 40

mel-scaled filters and the overall energy, along with their ∆
and ∆∆ values, altogether yielding 123 features per frame.

In every case, the neural network was trained on 17 neighbor-

ing frames, so the number of inputs was 663 for the MFCC

configuration, and 2091 for the FBANK configuration.

The weights of the neural net were initialized using the

formula proposed by Glorot et al. [2]; that is, using uniformly

distributed random numbers in the interval

[

−c ·

√
6

√
nn + ni

, c ·

√
6

√
nn + ni

]

,

Fig. 3. Phone error rate as a function of the number of hid-

den layers for FBANK features. Results are shown for the

development and the core test sets with different layer sizes.

where nn and ni are the number of neurons and inputs to the

given layer, respectively. The optimal value of c was found

empirically, and was set to 0.4 in all experiments. The net

was trained using semi-batch backpropagation, with the batch

size being 100. The initial learn rate was set to 0.001 and held

fixed while the error on the development set kept decreasing.

Afterwards it was halved after each iteration, and the training

was stopped when the improvement in the error was smaller

than 0.1% in two subsequent iterations. This way the training

took only 13-15 iterations on the average. As we mentioned

earlier, apart from the softmax output layer, all neurons of

the networks were rectifier neurons, and in the sparsifying

experiments the sparsity penalty was applied to all of them.

4. RESULTS

The results for the MFCC feature set are shown in Fig.2, for

the case of 2000 neurons per hidden layer. The plots show

how the phone error rate improves due to the sparsity penalty

and the introduction of more hidden layers. The scores are

presented for both the core test set and the development set.

As can be seen, the error drops quickly for up to 3 hidden

layers, but then for 4 and 5 hidden layers there is little or no

improvement. Also, adding the sparsity term to the cost func-

tion consistently improves the results by about 0.5% in abso-

lute terms (≈ 2.3% relative). The only exception is the case

of 5 hidden layers on the core test set, where the improvement

is insignificant. To quantify the sparsity, with the introduction

of the penalty term it rises from 64-65% to 72%. Based on the

scores on the development set, one should choose the sparse

model with 5 hidden layers, which gives a 21.8% phone error

rate on the core test set. In comparison, with a pretrained deep

net a 22.3% error rate is reported with MFCCs using 6 hidden

layers of 3072 units [4].

6987

Net size Dev. Core test Full test

4x2000 hidden units 18.0% 19.8% 19.4%

5x2000 hidden units 17.9% 20.3% 19.4%

Table 1. Phone error rates with CD phone models, using 4

and 5 hidden layers of 2000 units.

Fig.3 shows the results obtained for the FBANK fea-

ture set. As in the previous tests the sparsity penalty always

helped, in this case the scores without the sparsity term are

not shown at all. Instead, we use this figure to demonstrate

the effect of changing the layer sizes. Recognition accuracies

are shown for 1 to 5 hidden layers with 500, 1000 and 2000

neurons per layer, both for the development and the core test

sets. As can be seen, for the development set the improve-

ment is fully consistent with the increase of the number of

neurons and layers, while there is a slight fluctuation for the

core test set. The best result was got for 5 hidden layers with

2000 hidden neurons per layers, both for the development

and the test sets. The phone recognition error rate in this case

is 20.8% on the core test set. In comparison, in [4] 20.7%

is reported for pretrained deep nets, using 8 layers of 2048

units per layer (though in [16] a slightly better result, 20.5%

was obtained, there the input features were also more sophis-

ticated). Based on this, we may regard rectifier neural nets as

a competitive alternative to conventional deep nets.

Finally, Table 1 lists the phone error rates obtained using

858 triphone state targets. In this case the difference between

the 4 and 5-layer nets is within 0.1% on the development set,

while the scores show a large discrepancy for the core test

set. As the results on core test set might be unreliable because

of the very small size of this set, we decided to evaluate the

models on the full test set as well. For this much larger test

set the results were consistent with those obtained on the de-

velopment set, and were well below 20%. Unfortunately, for

these experiments with CD units we could not find a result

in the literature that would provide a fair comparison, as most

authors just work with CI models. Plahl et al. do use CD units

and report a 19.1% error rate with deep nets, but they apply a

discriminatively trained, boosted feature set [13]. Hence, by

comparison, our result of 19.8% seems reasonable.

5. SUMMARY

In this paper we applied deep sparse rectifier neural nets to the

TIMIT phone recognition task. To our knowledge, this type of

neural net has not yet been attempted for speech recognition.

From image recognition studies Glorot et al. concluded that

rectifier networks can yield performances just as good as deep

neural nets, but without the need for pre-training. Here we

extended these results to phone recognition as well. Hence,

rectifier neural nets appear to be a promising alternative to

sigmoid-based deep neural networks. Of course, more ex-

periments need to be performed on much larger data sets to

confirm our findings. Another possible future task is to carry

out experiments on the initialization scheme described earlier

in the paper.

6. ACKNOWLEDGMENTS

The author would like to thank Xavier Glorot and Abdel-

rahman Mohamed for their helpful suggestions.

7. REFERENCES

[1] H. Bourlard and N. Morgan, Connectionist Speech

Recognition - A Hybrid Approach, Kluwer, 1994.

[2] X. Glorot and Y. Bengio, “Understanding the difficulty

of training deep feedforward neural networks,” in Proc.

AISTATS, 2010, pp. 249–256.

[3] G. Hinton, S. Osindero, and Y. Teh, “A fast learning

algorithm for deep belief nets,” Neural Computation,

vol. 18, pp. 1527–1554, 2006.

[4] A. Mohamed, G. E. Dahl, and G. Hinton, “Acoustic

modeling using deep belief networks,” IEEE Trans.

ASLP, vol. 20, no. 1, pp. 14–22, 2012.

[5] G. E. Dahl, D. Yu, L. Deng, and A. Acero, “Context-

dependent pre-trained deep neural networks for large

vocabulary speech recognition,” IEEE Trans. ASLP, vol.

20, no. 1, pp. 30–42, 2012.

[6] D. Yu, L. Deng, and G. E. Dahl, “Roles of pre-training

and fine-tuning in context-dependent DBN-HMMs for

real-world speech recognition,” in NIPS 2010 Workshop

on Deep Learning and Unsupervised Feature Learning,

2010.

[7] F. Seide, G. Li, L. Chen, and D. Yu, “Feature engineer-

ing in context-dependent deep neural networks for con-

versational speech transcription,” in Proc. ASRU, 2011,

pp. 24–29.

[8] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rec-

tifier neural networks,” in Proc. AISTATS, 2011.

[9] V. Nair and G. E. Hinton, “Rectified linear units improve

restricted Boltzmann machines,” in Proc. ICML, 2010,

pp. 807–814.

[10] O. Vinyals and L. Deng, “Are sparse representations

rich enough for acoustic modeling?,” in Proc. INTER-

SPEECH, 2012.

[11] D.L. Ly, V. Paprotski, and D. Yen, “Neural networks

on GPUs: Restricted Boltzmann Machines,” Technical

Report, Dept. of Electrical and Comp. Eng., University

of Toronto, 2009.

6988

[12] C. M. Bishop, Neural Networks for Pattern Recognition,

Clarendon Press, 1995.

[13] C. Plahl, T. N. Sainath, B. Ramabhadran, and D. Na-

hamoo, “Improved pre-training of deep belief networks

using sparse encoding symmetric machines,” in Proc.

ICASSP, 2012, pp. 4165–4168.

[14] G.S.V.S. Sivaram and H. Hermansky, “Sparse multi-

layer perceptron for phoneme recognition,” IEEE Trans.

ASLP, vol. 20, no. 1, pp. 23–29, 2012.

[15] A. Mohamed, G. E. Hinton, and G. Penn, “Understand-

ing how Deep Belief Networks perform acoustic mod-

elling,” in Proc. ICASSP, 2012, pp. 4273–4276.

[16] G. E. Dahl, M. Ranzato, A. Mohamed, and G. Hinton,

“Phone recognition with the mean-covariance Restricted

Boltzmann Machine,” in NIPS, 2010, pp. 469–477.

6989

