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ABSTRACT

In this paper we investigate the use of Multi-level adaptive
networks (MLAN) to incorporate out-of-domain data when
training large vocabulary speech recognition systems. In a
set of experiments on multi-genre broadcast data and on TED
lecture recordings we present results using of out-of-domain
features in a hybrid DNN system and explore tandem systems
using a variety of input acoustic features. Our experiments
indicate using the MLAN approach in both hybrid and tandem
systems results in consistent reductions in word error rate of
5–10% relative.

Index Terms— deep neural networks, tandem, hybrid,
MLAN, TED, BBC

1. INTRODUCTION

In an ASR system, neural networks may be used to directly
compute HMM observation probabilities (the hybrid ap-
proach [1, 2]) or for feature extraction (the tandem approach
[3]). Tandem systems are HMM-GMM systems which use
features derived from neural networks trained as phone clas-
sifiers, concatenated with the original acoustic features. Tan-
dem systems have successfully used both decorrelated and
dimension-reduced phone posterior log probability features
[4] and hidden layer bottleneck features [5]. In both formula-
tions, neural networks have the advantage of being inherently
discriminative — trained to optimise phone or state probabil-
ities — and can incorporate wide acoustic contexts.

During the 1990s hybrid systems achieved good ex-
perimental results on some large vocabulary tasks [6, 7].
However, HMM-GMM systems became increasingly more
accurate owing to the use various techniques such as context-
dependent phone modelling [8] speaker adaptation using
MLLR [9], sequence-level discriminative training techniques
such as MMI and MPE [10], and high-dimension feature
space transforms such as fMPE [11], which either took ad-
vantage of the GMM structure or were much more compu-
tationally feasible for GMM-based systems compared with
hybrid systems. State-of-the-art HMM-GMM speech recog-
nition systems employ these techniques in combination with
the use of tandem features (e.g. [12]).
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Recent results have shown that hybrid systems can offer
significantly improved accuracy on large vocabulary conver-
sational speech recognition problems, compared with state-
of-the-art HMM-GMM systems [13, 14]. The major differ-
ences compared with earlier work are: (1) The use of deep
neural networks with many hidden layers [15]; (2) Context-
dependent HMM states as output classes1; (3) Generative
pre-training using restricted Boltzmann machines [18]. There
are now a number of published comparisons between hy-
brid HMM-DNN and HMM-GMM systems [14, 19, 15, 20].
There are fewer comparisons between tandem and hybrid
DNN systems: Sainath et al [21] found a tandem system us-
ing deep autoencoder bottleneck features was more accurate
than a comparable hybrid system.

Posterior features obtained from neural networks have
been used successfully in tandem systems for both cross-
lingual adaptation [22, 23, 24] and cross-domain adaption
[25, 26, 27, 28]. In these approaches, out-of-domain (OOD),
or foreign language posteriors are combined using a merger
MLP [27, 28, 24]; GMMs are retrained [26, 25]; or networks
adapted by additional training [26]. In contrast to cross-
lingual adaptation, when data from the target language is
typically assumed to be sparse, domain adaptation has the po-
tential to bring benefits even to resource-rich languages, not
least because domains can be characterised with increased
resolution as the amount of data increases.

We recently proposed a domain adaptation procedure
based on DNNs called multi-level adaptive networks (MLAN)
[29], described in Section 3. The central feature of MLAN
is that a second DNN is trained on tandem features gener-
ated from out of domain nets. Thomas [22] has proposed a
shallow neural network approach for spoken term detection
that is rather similar to MLAN. A related multi-layer net-
work structure, predating the current use of deep networks,
was proposed by Schwarz et al [30], but was not employed
for adaptation. We previously used MLAN exclusively in a
tandem framework [29]; here we investigate the technique
in a hybrid system, comparing MLAN hybrid systems with
MLAN tandem systems, and presenting results on a larger
scale task, the recognition of TED talks, in addition to the
recognition of multi-genre broadcast recordings.

1Hybrid systems with limited context-dependence have been investigated
previously [16, 17]
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2. TRAINING TANDEM AND HYBRID DNNS

We trained DNNs to model frame posterior probabilities, us-
ing labels obtained from Viterbi forced alignment using an
HMM-GMM system. The hidden layers use logistic sigmoid
nonlinearities and a softmax is used for the output layer to
provide posterior probability estimates for each output class.
All nets were pre-trained in an unsupervised manner using
layerwise restricted Bolzmann machine (RBM) pre-training
[18]. The nets were further fine-tuned to minimise the neg-
ative log-posterior probability of the true class labels, using
stochastic gradient descent. Training was performed using the
Theano library [31] on NVIDIA GeForce GTX 690 GPUs.

The tandem systems used monophone target classes. The
output posterior probabilities were decorrelated and reduced
to 30 dimensions using PCA, and then concatenated with the
original acoustic features, which were used to train tandem
HMM-GMMs from scratch. The DNN structure of the tan-
dem systems was not optimised on word error rate (WER),
but was set to minimise frame error rate on validation data.
All tandem systems used 4-layer nets with 9 frames of acous-
tic context and 1024 units in each hidden layer.

The hybrid systems used output classes corresponding to
tied context-dependent phone states. Scaled likelihood esti-
mates were obtained by dividing the outputs by class priors
estimated over the whole training data. The state tyings were
obtained from an HMM-GMM system. The hybrid DNNs
used 2048 hidden units in each layer and a acoustic context of
9 frames; we carried out experiments with 1–6 hidden layers.
The context-dependent DNNs used in the hybrid approach
offer higher resolution phonetic modelling, compared with
tandem DNNs. However the tandem HMM-GMM system
combines some of the advantages of DNNs — discriminative
feature extraction, wide acoustic context — with the benefits
of using generative statistical models, including model-space
speaker adaptation and the use of HMM discriminative train-
ing algorithms.

3. MLAN: MULTI-LEVEL ADAPTIVE NETWORKS

A network trained on data from one domain may be adapted to
a new domain by further training using the new data [26]: the
original data effectively provides a good initialisation for the
weights of the final net. When RBM pre-training is used for
initialisation, we observe only small gains from this approach.
In a tandem setup, where the nets are trained on OOD data,
adaptation may be performed by re-training or MAP-adapting
the GMM part of the system on the target domain.

The MLAN approach [29] uses posterior features from a
net trained on OOD data, augmented with in-domain acoustic
features, as input to a further set of DNNs which are trained
on in-domain data (Figure 1(b)). The advantage of the MLAN
scheme, is that the second-level DNNs are able to select dis-
criminatively the most important elements of the OOD fea-
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Fig. 1. A comparison of standard and MLAN DNN systems.

tures. Aside from Thomas et al [24], other schemes operate
only on the outputs of first-level MLPs, without the original
features, limiting the power of the second-level DNN; or they
use shallow MLPs [30], so that the final structure is effec-
tively one single DNN without pre-training. The second-level
DNN can incorporate multiple sets of complementary OOD
features (Section 4.4).

We investigated using the MLAN scheme in both a tan-
dem and hybrid setup. We trained two sets of second-level
DNNs on OOD tandem features: one set generates mono-
phone posterior features, and was used for a tandem HMM-
GMM system. The second set generate posteriors over
context-dependent tied states which transformed to scaled
likelihoods and used in a hybrid MLAN system. Figure 1
illustrates the six possible setups: (a) the shows the three
systems in which no OOD data is used, and (b) shows the
three systems utilising OOD network.

Figure 1(b) is in fact a simplification, as a further consid-
eration for the hybrid MLAN system is the choice of GMM
to obtain the triphone state tying. We chose to use the same
state tying structure for tandem and hybrid systems trained on
a given set of features. This implies that the tandem MLAN
system is required to generate the tying structure used in the
hybrid MLAN system. This minimises the influence of input
features to which the DNNs are invariant.
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4. EXPERIMENTS

4.1. ASR tasks

We carried out experiments on two diverse large vocabulary
speech recognition tasks. The first, bbc, is a corpus of multi-
genre television and radio shows from the British Broadcast-
ing Corporation (BBC), kindly made available by BBC Re-
search and Development, containing speech that is mostly
British English. The radio portion includes a wide range of
genres, including news, weather, on-location reports and par-
liamentary debates; the television portion consists of several
episodes of a drama series, which includes dramatic, fast,
emotional speech and high levels of background noise, mak-
ing ASR particularly challenging. More detail of the corpus
can be found in [29]. We divided the data at the show level
into a training set of 20.7 hours and a test set of 2.3 hours.

Our second task is the TED English transcription task
from the IWSLT evaluation campaign [32]. We present
results on the dev2010, tst2010 and tst2011 sets,
each containing 8-11 single-speaker talks of approximately
10 minutes’ duration. The talks are pre-segmented by the
IWSLT organisers [33]. Following the IWSLT rules, our in-
domain acoustic model training data was derived from 813
publicly available TED talks dating prior to end of 2010. Af-
ter automatic segmentation and lightly-supervised alignment,
143 hours of speech remained for acoustic model training.

4.2. Out-of-domain data

To investigate the MLAN technique, two varied sources
of out-of-domain data were used: firstly 276 hours of US-
English conversational telephone speech (CTS) taken from
the Switchboard I, Switchboard II and CallHome corpora;
secondly a set of multi-party meetings from the AMI corpus
(AMI), described in [12]. Only the second of these was used
in the TED system, because we felt the mismatch in style
between the CTS and TED domains was particularly high –
though we did not investigate this experimentally. Table 1
summarises the total quantities of training data available.

Domain Training data (hrs)
BBC 20.8
TED 143.0
CTS 276.0
AMI 126.8

Table 1. Quantities of in-domain and OOD training data

4.3. Experimental setup

All systems used 3-state cross-word triphone HMMs. Mod-
els trained on the BBC data, used around 3,000 tied states;
models trained on TED data used 12,000 states, reflecting

the larger quantity of training data available. There were 16
Gaussians per state. The baseline acoustic features were were
perceptual linear prediction (PLP) coefficients with first, sec-
ond and third temporal derivatives, projected to 39 dimen-
sions with an HLDA transform. All features were normalised
for mean and variance at the speaker level.

The out-of-domain neural network features used varied
with the corpus. For the AMI corpus, a stacked bottleneck ar-
chitecture with a filterbank input was used following [12]. For
the CTS corpus, tandem posterior features were computed us-
ing DNNs, after down-sampling the in-domain data to 8khz.
In all cases the neural network features had to 30 dimensions,
giving a total feature vector dimension of 69.

To make the tandem systems as competitive as possible,
the HMM-GMM models were trained with MPE, which gave
1-2% improvement over ML-trained models. Due to the in-
accuracy of speaker labels, we did not perform any speaker
adaptation on the BBC data. For the TED system, we per-
formed adaptation at the talk level. For the tandem setups,
we used model-space CMLLR adaption with 32 block diag-
onal transforms per speaker, adapting the neural-network and
acoustic features independently, and also performed speaker
adaptive training (SAT). For the hybrid systems, initially no
adaption was used; however, we later performed an adaptive
training procedure by applying a feature-space MLLR trans-
form derived the relevant tandem system to all input feature
vectors. Unless otherwise noted, results were obtained using
trigram language models, using HDecode.

4.4. Results

We firstly present result on the BBC task. Table 2 gives re-
sults for the baseline tandem and hybrid systems, and 3 gives
results for the MLAN systems. Table 2 shows that the use
of both in-domain and OOD tandem features provides sub-
stantial gains over the PLP baseline, confirming the domain-
portability of the neural networks. Both AMI and CTS fea-
tures improve performance, despite the relatively high domain
mismatch2 – the AMI features, in fact, perform better than
the in-domain tandem system. The application of the MLAN
technique yields additional improvements, for OOD features,
the best system reducing WER by 2.9% absolute over the best
tandem system. In particular, the results show that hybrid sys-
tems also benefit from training new DNNs on OOD tandem
features, reducing WER from 33.7% for the baseline hybrid
system to 29.6% when AMI and CTS tandem features were
included. In this case, the hybrid MLAN systems give lower
WER over equivalent tandem MLAN systems, with the same
state-tying.

Secondly, we present results on the TED lecture task. De-
velopment results on the dev2010 and tst2010 sets are
shown in Table 4. The results largely support the findings

2AMI and CTS baseline GMM systems used directly on the BBC task
give WERs of 51.8% and 64.1% respectively.
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Input features WER (%)
PLP 36.1
BBC tandem 33.0
AMI tandem 32.5
CTS tandem 34.1
BBC hybrid 33.7

Table 2. WER (%) for baseline tandem and hybrid systems
on the BBC test data.

MLAN system Tandem Hybrid
AMI 31.0 31.0
CTS 30.7 30.1
AMI + CTS 29.9 29.6

Table 3. WER (%) for tandem and hybrid MLAN systems on
the BBC test data.

from the BBC experiments – even though much a larger quan-
tity of in-domain training data is available – in that the use
of AMI tandem features reduces WER compared to the PLP
baseline3, and both tandem and hybrid MLAN systems con-
sistently improve performance further: by 1.5% and 1.2%
on tst2010 respectively, compared to equivalent systems
without OOD features. We found that the use of SAT, us-
ing a single feature-space linear transform, was essential for
the hybrid system to achieve competitive performance com-
pared to the tandem system. In Table 5 we also show the
results of our best-performing systems on the tst2011 test
set, additionally rescoring lattices with 4-gram LM. Here we
found the tandem MLAN system to perform slightly better
than the hybrid system with SAT. However, it should be noted
that the tandem system benefits from more powerful adapta-
tion transforms and the use of MPE training. Finally, Figure 2
illustrates the effect of increasing the number of layers of the
hybrid MLAN DNN – we see that they continue to benefit
from increased depth, as is well-known in the standard case.

System dev2010 tst2010
PLP 21.0 20.3
TED tandem 19.4 17.9
AMI tandem 20.3 18.1
Baseline hybrid 21.0 20.3
+ SAT 18.6 17.6
Tandem MLAN 18.5 16.4
Hybrid MLAN 19.2 17.8
+ SAT 17.8 16.4

Table 4. A comparison of tandem systems on the TED lec-
tures. Baseline and tandem systems are trained with SAT and
MPE.

3An AMI baseline GMM with speaker-adaption on the TED task give
WERs of 32.0% on dev2010 and 30.7% on tst2010.
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Fig. 2. The effect of increasing the number of DNN layers for
the hybrid MLAN systems on TED lectures (systems without
SAT)

System WER
Tandem MLAN 15.1
+ SAT + MPE 12.8
+ 4gram LM 12.4
Hybrid MLAN 14.2
+ SAT 13.0
+ 4gram LM 12.6

Table 5. Results of MLAN systems on the tst2011 test set

5. CONCLUSIONS

We have presented experiments using out-of-domain tandem
features on two diverse ASR tasks. The results demonstrate
that substantial gains in performance may be obtained by the
use of multi-level adaptive networks, when both tandem and
hybrid deep neural networks are trained on tandem features
generated for in-domain data using out-of-domain network
weights, even when the domain-mismatch is large. Our ex-
periments comparing tandem and hybrid DNNs suggest that
there is not a large difference in performance between the two.

There are, however, a number of directions to explore in
future research. Firstly, the best form of OOD features for
MLAN has not been investigated. We have currently used
fixed 30-dimensional tandem features, but large vectors may
be better when large quantities of OOD data are available.
We also plan to compare bottleneck and posterior features as
inputs to the MLAN DNNs.

The relatively large amount of data available for adap-
tation to each speaker – and the fact that speaker labels are
known – leads to particularly large gains from speaker adap-
tation on the TED task, which benefits the tandem systems
much more than the hybrid systems. For DNN hybrid sys-
tems to achieve maximum performance on tasks like this, it is
clear that more effective methods of adaptation are required.
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